CGE analysis

In the standard GCR assay, expression of both CAN1 and URA3 must be lost to generate clones that will grow on plates containing 5-FOA and canavanine (FOA+Can). After standard GCR events, these genes are not expressed because they are physically lost by de novo telomere addition or non-reciprocal translocation or large deletion. However, PCR and Southern analysis demonstrated that telomere addition was not common, and URA3 and CAN1 were present at their original locations in many pif1-m2 + G4 and *pif1-m2 rrm3* Δ + G4 (and some *pif1-m2 rrm3* Δ) clones. To determine if genes were mutated, the genes and ~ 200 bp of their up- and downstream flanking sequences were cloned and sequenced. Similar analyses of 11 independent $sgs1\Delta + G4$ GCR clones showed that CAN1 and URA3 were missing (data not shown), suggesting that the pif1-m2 + G4, *pif1-m2 rrm3* Δ + G4, and *pif1-m2 rrm3* Δ silencing of *CAN1* and *URA3* is enhanced by lack of nuclear Pif1 function and a nearby G4 motif. To investigate this phenomenon in more detail, we tested all of the markers (URA3, CAN1, and LEU2, which marks the G4 motif) in the parental GCR strains and found that the WT, pifl-m2, $sgs1\Delta$, and *pif1-m2 rrm3* Δ strains all grew on –Ura medium (and those with the G4 insert grew on -Leu medium) but not on media containing FOA, Can, or both (data not shown). Thus, before the GCR assay, all of the markers functioned as expected. Similar plating assays with the post-GCR pif1-m2 + G4, pif1-m2 rrm3 Δ + G4, and pif1-m2 rrm3 Δ clones demonstrated that they grew on FOA, Can, and FOA+Can plates, as well as on -Ura (data not shown), despite the presence of WT URA3 and CAN1. Together, the above data suggest that either transcription or translation of URA3 is silenced, and this silencing is somehow related to lack of nuclear Pifl and the presence of the G4 insert. As a control for this hypothesis, we characterized the rare GCR events that occur in the *pif1-m2* "no insert" strain that were not due to telomere addition and found that the CANI and URA3 markers were missing, not silenced.

Supplementary Figure 1. Binding of the TP_{G4} and Y-structure substrates (0.1 nM) as a function of [ScPif1]. Error bars here and in all subsequent figures correspond to one standard deviation of the mean from \geq 3 independent experiments.

Supplementary Figure 2. Prokaryotic Pif1 G4 DNA helicase assays. Unwinding of the rDNA_{G4} and TP_{G4} substrates (0.1 nM) as a function of the concentration of (a) BacPif1, (b) BdePif1, (c) CamPif1, (d) PsyPif1, and (e) rv5Pif1. The apparent K_M s represent the midpoints of the protein titration curves. (f) Time course analyses of G4 DNA unwinding by the BacPif1, BdePif1, and CamPif1 helicases. The rates of BacPif1, BdePif1, and CamPif1 G4 unwinding are 38, 75, and 420 pM G4/min.

Supplementary Figure 3. hWRN G4 DNA helicase assays. Time course of the unwinding of the TP_{G4} and $rDNA_{G4}$ substrates (100 pM) by 100 nM hWRN at 37°C. There are no error bars because the data are the average of two independent experiments.

Supplementary Figure 4. Increased Rrm3 binding to G4 motifs in the absence of ScPif1 and types of GCR events. (a) Rrm3-Myc binding to five G4 motifs and eight non-G4 motifs in WT (gray) and *pif1-m2* (white) cells. Binding was normalized to input DNA and *ARO1*. * indicates a

statistically significant difference (p < 0.0014) in Rrm3 binding in *pif1-m2* vs. WT cells as calculated by the Student's *t*-test. (b) ChIP-qPCR analysis of Pif1-K264A binding in WT (grey bars) and rrm3 Δ (white bars) cells. Pif1-K264A was C-terminally tagged at its endogenous locus with 13 Myc epitopes as described¹⁹. Pif1-K264A binding was measured at three candidate G4 motifs, two non-G4 Pif1 binding sites (rDNA; and telomere VI-R, Telo), and four Rrm3dependent sites (tRNA, ARS, TEF1, and TEF2) (Rrm3 dependent sites are places where replication pauses in the absence of Rrm3¹⁸). Values were normalized to both input and the amount of ARO1 DNA in the immunoprecipitate and are not significantly different by the Student's *t*-test. (**c**-**e**) Southern blot analyses of *Alw*NI-digested DNA from independent GCR clones from (c) *pif1-m2*, (d) *pif1-m2*+G4, and (e) *pif1-m2 rrm3* Δ +G4 cells. Blots were digested with AlwNI and probed with CIN8 (primer pair 3 from A). In d, e, and f, 8/10, 1/10, and 0/10 clones display apparent telomere additions ("fuzzy" bands, arrow). See Supplementary Information for an explanation of the banding pattern. The banding pattern for the *pif1-m2* $rrm3\Delta$ clones containing no G4 insert looks similar to f (data not shown), but the silencing phenotype of the cells is not the same. The lack of telomere addition in the *pif1-m2 rrm3* Δ strains with or without a G4 insert is consistent with the previous finding that $rrm3\Delta$ suppresses *pif1* telomere addition²⁶.

Chr X G4	TCTAGAATAATGGGTCCTCCAAGCGGTAAAACTTACATGGGATGGTGGGGGTCACATGGGTC <mark>BGATOO</mark>	original sequence
sgs1	TCTAGAATAATGGGTCTCCCAAGCGGTAAAACTTACATGGGGATGGTGGGGTCAATGGGGTC <mark>BGATUG</mark>	no change
pif1-m2	GGATCC	deletion/flipped recombined with <i>PMA1</i> deletion insertion insertion deletion
rrm3	TCTAGAATAATGGGGTCCTCCAAGCGGTAAAACTTACATGGGGGATGGTGGGGGTCACATGGGGGTGGGCTC <mark>36ATCC</mark> TCTAGAGTAATGGACCCATGTGTGTCTAGGGAGTTTC <mark>36ATCC TCTAGA</mark> AGTTGGAGTCCCCCCAGCGGTAAAAGGGGGTTCCGGAAGGTCCGGGTCCGGGTCCGGACTCGGACTCCGGACCC	no change deletion/mutation mutation/insertion
pif1-m2 rrm3	GGATCCGTATCGATAAGCTTGATATCGAAT	deletion/flipped? insertion mutation mutation deletion/flipped?
Chr I G4	TCTAGAGGAAT <u>CCC</u> AACAATTATCTCAAAATT <u>CCCCC</u> AATTCTCATCA-GTAACA <u>CCCCACCCACCCAGTATT<mark>96A1</mark> memory</u> constructions of the second state of the second	CC original sequence
sgs1	TCTAGAGGAATCCCAACAATTATCTCTCAAAATTCCCCCCAATTCTCATCA	cc no change
pif1-m2	TCTAGAGGGAGGGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGNCAAGCTCGAAATTTCTAGAGGTACCCAAAC	cc mutation/insertion cc recombined with <i>PMAI</i> deletions/mutations deletions/mutations deletions/mutations cc deletions/mutations
rrm3	<mark>TCTAGA</mark> GGTAC CC AAACCCAATTGTCTA <u>C</u> AAGTTTCCTTAGCAATA <u>CC</u> <mark></mark>	cd recombined with <i>PMA1</i> cd recombined with <i>PMA1</i>
pif1-m2 rrm3	TCTAGAGGATAACAATTTCACACAGGAAA <u>C</u> AGCTATGACCATGATTA-CGCCAAGCTCGAAATT <mark>GGAT TCTAGA</mark> GGTTCT <u>C</u> TGTGGGNTGGAGTCCCCCCTT <u>C</u> GGTAGTAGGGGGGGGGGGGGGGGGGGGTCATTTCGG <mark>GGAT TCTAGA</mark> GGATTT <u>C</u> TGGGATAATGGGTCCTCCAT <u>C</u> GGTAGAAGGGGTCGGAGGGGGGGGGGGGGGGGGGGGGG	CC mutations/deletions CC insertion CC mutation large deletion
Supplementa	ry Figure 5. Sequences of G4 inserts in representative GCR clones. ClustalW alignme	nt of the G4 insert sequences after
GCR assays ir	1 the strains indicated on the left relative to the original Chr I _{G4} and Chr X_{G4} sequences	(underlined on left). The <i>Xba</i> I
and BamHI si	tes used to clone the inserts into pRS415 (Supplementary Table 8) are highlighted in y	ellow and red, respectively; this

sequences that were PCR amplified with the G4 motifs from S. cerevisiae genomic DNA, which was omitted to simply presentation of G4 motif (e.g., deletion or mutation) is indicated on the right. In the GCR clones, dashes represent deleted residues. In the original Chr ~200 bp region is within the ~1 kb region that was amplified by PCR prior to sequencing. The ellipses represent endogenous flanking ends at the first and last underlined residues, respectively, in the Chr I_{G4} and Chr X_{G4} sequences. In the original motifs, the underlined residues are predicted to participate in G-G base pairing to form the G4 structure; the Chr I_{G4} forms on the complementary strand. In the data. The types of post-GCR alterations noted in the G4 motifs extended into these flanking sequences. The G4 motif begins and the mutated sequences, the underlined residues are no longer predicted to form G4 structures. The type of event that occurred at the I_{G4} and Chr X_{G4} sequences, dashes represent sites of insertions in one or more GCR clones.

Supplementary Figure 6. Helicase expression in the *pif1-m2 rrm3* Δ + X_{G4} strains. The various helicases were C-terminally tagged with 3xFLAG and expressed from a *TRP1*-marked *CEN* vector under the control of the *RRM3* promoter. Whole cell extracts were prepared, proteins were separated on an 8% polyacrylamide gel, transferred to nitrocellulose, and probed with an anti-FLAG antibody. The blot was then stripped and re-probed with an anti-tubulin antibody as a loading control. The expected molecular weights of the recombinant proteins are indicated. Three bands appear in the ScPif1 and ScPif1-KA lanes; the two lower molecular weight bands are likely degradation products from proteolysis of the N-terminus. Expected molecular weights: Rrm3, 84 kDa; Pif1 and Pif1-KA, 100 kDa; BacPif1 and BacPif1-KA, 52 kDa; and hPIF1, 75 kDa.

Supplementary Figure 7. Telomere length in *pif1-m2* cells heterologously expressing Pif1 family helicases. Full blot image of Southerns shown in Figure 5c.

Enzyme	Species	Type (polarity)	Protein length	G4 binding	G4 unwinding	Reference(s)
ATRX	Human	DNA (N.D.)	Full length	Yes	N.D. ¹	21
BLM	Human	DNA (3'-5')	Full length	Yes $(2.8)^2$	Yes	22-25
ChlR1/DDX11	Human	DNA (5'-3')	Full length	Yes (~2-8)	Yes ³	26
DHX9/NDH II/RHA	Human	RNA (3'-5')	Full length	N.D.	Yes	27
DnaB	E. coli	DNA (5'-3')	Full length	N.D.	Yes	M. Bochman, unpublished results
Dna2	S. cerevisiae	DNA (5'-3')	Not described	Yes	Yes	28
hDna2	Human	DNA (5'-3')	Not described	Yes (~6)	Yes	28
DNA helicase IV/nucleolin	Human	Both (5'-3')	284-709/710 ⁴	Yes (≥79)	N.D. ⁵	29
FANCJ	Human	DNA (5'-3')	Full length	N.D.	Yes (~1-2)	30
gp41	phage T4	DNA (5'-3')	Full length	N.D.	Yes	M. Bochman, unpublished results

Table S1. Helicases tested for G4 DNA binding and unwinding.

- ¹ N.D. = not determined. ² The numbers in parentheses indicate the K_d (G4 binding) or K_M (G4 unwinding) in nM. ³ Preferentially unwinds two-stranded antiparallel G2' G4 substrate relative to four-stranded parallel G4 substrate. ⁴ Indicates the amino acids comprising the truncated polypeptide/total amino acids in the full-length protein. ⁵ Hypothesized to induce G4 formation.

LTAg	SV40	DNA (3'-5')	Full length	N.D.	Yes	31, 32
Pif1	S. cerevisiae	DNA (5'-3')	Full length ⁶	Yes (~0.07- 0.14)	Yes (~0.01)	³³ Current manuscript
hPIF1	Human	DNA (5'-3')	Full length ⁶	Yes	Yes	34
RecBCD	E. coli	DNA (bi-polar)	Full length	N.D.	No ⁷	23
RecQ	E. coli	DNA (3'-5')	Full length	N.D.	Yes	35
RecQ1	Human	DNA (3'-5')	57-649/649	Yes (1.8)	No ⁸	24
RHAU/DHX36/ G4R1	Human	RNA	Full length	Yes (low pM) to nM range)	Yes	36, 37
RHAU/CG9323	Drosophila melanogaster	RNA	Full length	Yes	Yes	37
SARS cov helicase	coronavirus	DNA	Full length	Yes	Yes	38
Sgs1	S. cerevisiae	DNA (3'-5')	Full length	Yes ⁹	Yes ¹⁰	Current manuscript
Sgs1 truncation	S. cerevisiae	DNA (3'-5')	400-1268/1447	Yes (5)	Yes	25
Srs2	S. cerevisiae	DNA (3'-5')	1-898/1174	N.D.	Yes	M. Bochman, unpublished results
WRN	Human	DNA (3'-5')	Full length	N.D.	Yes	22, 27, 39

⁶ Nuclear isoform.

⁷ Only tested on one G4 substrate (TP) but unwound forked and partial duplex DNAs under same reaction conditions.
⁸ Inactive on G2' and parallel G4 substrates but active on forked and Holliday junction substrates.
⁹ Binding is poor to three tested G4 substrates, precluding the accurate determination of a dissociation constant.
¹⁰ G4 DNA unwinding is poor relative to unwinding of a forked DNA substrate.

G4 motif	<i>S. cerevisiae</i> chromosome	Sequence (5'-3')
Poly(dA)	N/A	АААААААААААААААААА
Poly(dC)	N/A	CCCCCCCCCCCCCCCC
Poly(dG)	N/A	GGGGGGGGGGGGGGGGGGGGG
Poly(dT)	N/A	TTTTTTTTTTTTTTTTTTTT
G-rich	N/A	CGGCCCGGCGGTCCGCGGTC
Non G-rich	N/A	CAAAGGACCCTTTGTGGATC
rDNA _{G4}	XII	GGGTAACGGGGAATAAGGGTTCGATTCCGGAGAGGG
TP _{G4}	N/A	GGGGGAGCTGGGGTAGATGGGAATGTGAGGG
Chr IV G4	IV	GGGGAGGGGAAGGGGAGGGG
Chr IX _{G4}	IX	GGGTACGGTGGGTAATAAGGGAAGGTATCGGG
Chr X _{G4}	Х	GGGTCCTCCAAGCGGTAAAACTTACATGGGATGGTGGGGTCACA
Chr XI G4	XI	TGGG
Chr XII G4	XII	GGGCACGGGCACTCAATGGACGGGGTATCCACCCAGCTTGGAAA GGGG
Y-structure	N/A	GGGGTGGTGCTTCAGCCTGGGGTAACAAATCAAGTTGGGGCGGT
		GCATCCACTTGGGCGTCGGG
		Top =
		TTTTTTTTTTTTTTTTTTTTTTTTTTTTGACGCTGCCGAATTCTG
		GCTTGCT
		Bottom =
		TGAGTGAGCAAGCCAGAATTCGGCAGCGTCTTTTTTTTTT

Table S2. Sequences used in DNA binding and helicases assays.

Tested G4 motifs are from the *S. cerevisiae* genome ^{10, 19} except G4-TP. G4-TP is a well-characterized four-stranded parallel G4 DNA substrate derived from a mouse immunoglobulin locus ²³. All G4 substrates contained either a 5' or 3' 10-nt poly(dA) tail (not shown) for ScPif1 or Sgs1 experiments, respectively. The Y-structure substrate was prepared by annealing the top and bottom oligonucleotides listed above and filling in the top strand with α^{32} P-dCTP and unlabeled dATP, dGTP, and dTTP using Klenow Fragment (3' \rightarrow 5' exo⁻) (NEB).

G4 motif	S. cerevisiae	Sequence (5'-3')
	chromosome	
I _{G4}	Ι	CCCAACAATTATCTCAAAATTCCCCCCAATTCTCATCAGTAACACC
		CCACCCC
X_{G4}	Х	GGTGGGTAATAAGGGAAGGTATCGGGATTGGGG
NG	VII	CTAATCTTTCAGCGTTGTAAATGTTGGTACCCAAACCCAATTGTC
		TACAAGTTTCCTTAGC
GR	Ι	ATGGTGGTCATCTCAGTAGATGTAGAGGTGAAAGTACCGGTCCA
		TGGCTCGGT

 Table S3. Sequences used in GCR assays.

Strain	Genotype	Reference or source
YPH500	MATα ura3-52 lys2-801 ade2-101 trp1 Δ 63 his3 Δ 200 leu2 Δ 1	1
YPH499	MATa ura $3-52$ lys $2-801$ ade $2-101$ trp $1\Delta 63$ his $3\Delta 200$ leu $2\Delta 1$	1
KP359	<i>MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1</i> <i>Rrm3-MYC13::TRP1 pif1-m2</i>	This study
KP349	<i>MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1</i> <i>Rrm3-MYC13::HIS3</i>	This study
KP448	MATa/α ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 PIF1/pif1-m2	This study

Strain	Gene(s) of interest	Insert	Plasmid
MBY49	WT	No insert	-
KP296	WT	G4-I	-
KP327	WT	G4-X	-
KP298	WT	G-rich	-
KP299	WT	Non-G-rich	-
KP313	pif1-m2	No insert	-
KP323	pif1-m2	G4-I	-
KP322	pif1-m2	G4-X	-
KP330	pif1-m2	G-rich	-
KP329	pif1-m2	Non-G-rich	-
MBY79	$rrm3\Delta$	No insert	-
KP304	$rrm3\Delta$	G4-I	-
KP328	$rrm3\Delta$	G4-X	-
KP332	$rrm3\Delta$	G-rich	-
KP331	$rrm3\Delta$	Non-G-rich	-
MBY132	$sgs1\Delta$	No insert	-
KP314	$sgs1\Delta$	G4-I	-
KP324	$sgs1\Delta$	G4-X	-
KP311	pif1-m2 rrm3 Δ	No insert	-
KP325	pif1-m2 rrm3 Δ	G4-I	-
KP326	$pif1$ -m2 $rrm3\Delta$	G4-X	-
KP334	$pif1$ -m2 $rrm3\Delta$	G-rich	-
KP333	pif1-m2 rrm3 Δ	Non-G-rich	-
KP351	pif1-m2 sgs1 Δ	No insert	-

 Table S5. Saccharomyces cerevisiae strains used for gross-chromosomal rearrangement assays.

KP352	pif1-m2 sgs1 Δ	G4-I	-
KP353	pifl-m2 sgs1 Δ	G4-X	-
MBY225	pif1-m2 rrm3 Δ	G4-X	pMB13 (empty vector)
MBY222	pif1-m2 rrm3 Δ	G4-X	pMB282 (ScPif1)
MBY223	pif1-m2 rrm3 Δ	G4-X	pMB283 (ScPif1-KA)
MBY224	pif1-m2 rrm3 Δ	G4-X	pMB274 (Rrm3)
MBY194	pif1-m2 rrm3 Δ	G4-X	pMB272 (Pfh1)
MBY233	pif1-m2 rrm3 Δ	G4-X	pMB292 (hPIF1)
MBY213	pif1-m2 rrm3 Δ	G4-X	pMB270 (BacPif1)
MBY217	pif1-m2 rrm3 Δ	G4-X	pMB288 (BacPif1-KA)
MBY252	pif1-m2 rrm3 Δ	G4-X	pMB267 (BdePif1)
MBY250	pif1-m2 rrm3 Δ	G4-X	pMB289 (BifPif1)
MBY209	pif1-m2 rrm3 Δ	G4-X	pMB303 (CamPif1)
MBY251	pif1-m2 rrm3 Δ	G4-X	pMB304 (V99B1Pif1)
MBY221	$pif1$ -m2 $rrm3\Delta$	G4-X	pMB305 (PsyPif1)

*All tested inserts (~200-250 bp) were identified as regions with strong Pif1 binding ¹⁹. G4-I, G4 motif from chromosome I; G4-X, G4 motif from chromosome X; G-rich, G-rich sequence from chromosome I; Non-G-rich, non-G-rich sequence from chromosome VII.

Modification	Oligo	Sequence (5'-3')
hert 1 2 I ID 1 2	MD262	
NXII 5.: UKAS	MB202	
		ACGC
	MB277	CACATTATTATGTAAACTATAATATACAATGTTGCCTATC
		AAGACAAACATATGCACTCTATGACATAGGCCACTAGTG
		GATCTG
	MD20	
rrm3::HIS3MX6	MB30	GAACAAGCICAAAAGICGAGAGAIIIGIICIIAIAAGAC
		ATCCCGCGGATCCCCGGGTTAATTAA
	MB31	GAAAAGAAAACTTCAACTAGAGTATATGCATTTATTCGTT
		GCAAGGAATTCGAGCTCGTTTAAAC
+		
sgs1::his5	MB32	TGTTGTATATATTTAAAAAATCATACACGTACACACAAGG
		CGGTACAGCTGAAGCTTCGTACGC
	MB33	GAATGGTGTCGTAGTTATAAGTAACACTATTTATTTTCT
		ACTCTCGTATCCGGTGATCACCTAGAC
prb1::insert	KP321f	CAAACTTAAGAGTCCAATTAGCTTCATCGCCAATAAAAA
		AACAAACTAAACCTAATTCTAACA
	KP321r	ΤΤGTAACCTCGAGACGCCTAAGGAAAGAAAAAAAAAA
	XI J 211	
		ΑΑΑΟυΑΟυΙΟΑΑΑΙΙΙΙΙΟΙΑΑΑ

Table S6. Oligonucleotides used for cloning.A) Oligonucleotides used for gross-chromosomal rearrangement strain construction.

*The definitions of G4-I, G4-X, G-rich, and Non-G-rich are the same as in Tables S2 and 3. B) Prokaryotic Pif1 cloning primers.

Species (helicase, accession #)	Oligo	Sequence (5'-3')*
Bacteroides sp. 2_1_16	MB215	CG <u>GGATCC</u> ATGGAAGATATGATTTTGACAGA
(BacPif1, GG705209)		AGAGATGCAAAAAATAATGAATCTC
	MB216	GATCCG <u>CTCGAG</u> ATCTAACCGTTTACCATAA
		TAGTTACCTTCTGATTTGTATGCCC
Bdellovibrio bacteriovorus	MB211	CTGA <u>AGATCT</u> ATGAATTCAGAGTCCAAATGC
HD100 (BdePif1, BX842655)		TATCGTTTTTATATTTGCTTCGC
	MB212	GATCCG <u>CTCGAG</u> AAGACCTTCAAACTGCTTA
		TAAAAATGCAAAACTTTTGGATCG
Campylobacter jejuni subsp.	MB196	CG <u>GGATCC</u> ATGTTTGATAAACTAGAAAAAAT
jejuni NCTC 11168 (CamPif1,		TTTAGCTTATGATAATGTTTTTTTAAGTG
AL111168)		
	MB198	GATCCGCTCGAGGATTTGTTCTTGTATTTCG

		AGATCTAAAAAATTATGTTTTTT
Escherichia coli phage rv5	MB427	CG <u>GGATCC</u> GAAAAAGGGCAGTATGATGTAG
(rv5Pif1, DQ832317)		GCACAGATGC
	MB428	GATCCG <u>CTCGAG</u> TACGTCCCCCTCTTCTGCT
		CTGGTTTC
Psychrobacter sp. PRwf-1	MB455	CAGTCG <u>ATTAAT</u> ATGGGATCCAAACAAGCG
(PsyPif1, CP000713)		ACCGCACTGG
	MB457	GATCCG <u>CTCGAG</u> ATCAATAAAGACAAGCGC
		TAAGCGGATGG

*Restriction sites used to clone into the *Bam*HI and *Xho*I sites of the expression plasmids are underlined.

Table S7. Multiplex PCR primers.			
Primer pair	Sequences (5'->3')	Expected PCR	
		product size (bp)	
PCM1 For	CGATGAAGGTTGATTACGAGC	615	
PCM1 Internal Rev	GAAGGCTCCTATAAAGAACG		
IG SOM1 Rev	CGAGGTCACGGACACATATACC		
MB634	GACACGAAATTACAAAATGGAATATGTTC	500	
	ATAGGGTAGACG		
*Internal CIN8 Rev	GAAAATCGACATAATAAGAGTAGATTTCC	414	
Internal CIN8 For	GATTTGCGATAGCGTCGCTGCC		
Internal NPR2 Rev2	CTTAGTTTAGAAATTTTGGCAATG	Rev2+Inside=340	
Inside Hot Spot For	GAAAAGGATACAAAGGATATGAG	Rev2+Outside=451	
Outside Hot Spot Rev	GTTTTCTTCGATTTGAAGGTGTTGG		
IG before CAN1 For	GAGTTTGCTAGATTCATAAAAGCC	241	
IG before CAN1 Rev	CCGATAATGTCTGAGTTAGGTGAG		

*The PCR product generated by the *CIN8* primer pair was used as the probe for the Southern blots in Fig. 3.

Name	Feature(s) of interest	Reference or source
pFA6a-Myc13-	13xMyc, <i>HIS3</i>	5
His3MX6		
pET28b-Pif1-His	Saccharomyces cerevisiae PIF1	40
pFB-MBP-SGS1-His	S. cerevisiae SGS1	7
pUC19+Bd3546 (for)	Bdellovibrio bacteriovorus Pif1	This study*
pMB116	N-terminal 4xStrepII tag, C-terminal 6xHis	This study
	tag	
pMB131 ^a	Bacteroides sp. 2_1_16 Pif1	This study
pMB142 ^a	<i>B. bacteriovorus</i> Pif1	This study
pMB135 ^a	Campylobacter jejuni Pif1	This study
pMB226 ^a	Escherichia coli phage rv5 Pif1	This study
PMB241 ^a	Psychrobacter sp. PRwf-1 Pif1	This study
pUG72	URA3	4
pFA6a-His3MX6	HIS3	5
pUG27	his5 ⁺	4
pRS415	CEN LEU2	1
KP114 ^b	G4 Chr I	This study
KP118 ^b	G4 Chr X	This study
KP116 ^b	GR Chr I	This study
KP117 ^b	Chr VII	This study
pMB258	CEN1, TRP1, RRM3 promoter, C-terminal	This study
	3xFLAG	
pMB282 ^c	S. cerevisiae PIF1	This study
pMB307 ^c	CEN1, TRP1, PIF1 promoter, PIF1, C-	This study
	terminal 3xFLAG	
pMB283 ^c	<i>S. cerevisiae pif1</i> -K264A	This study
pMB274 ^c	S. cerevisiae RRM3	This study
pMB272 ^c	Schizosaccharomyces pombe $pfh1^+$	This study
pMB292 ^c	Homo sapiens PIF1	This study
pMB270 ^c	Bacteroides sp. 2_1_16 Pif1	This study
pMB288 ^c	Bacteroides sp. 2_1_16 Pif1-KA	This study
pMB267 ^c	C. jejuni Pifl	This study
pMB289 ^c	P. sp. PRwf-1 Pif1	This study
pMB303 ^c	B. infantis Pif1	This study
pMB304 ^c	Emiliana huxleyi Virus 99B1 Pif1	This study
pMB305 ^c	<i>B. bacteriovorus</i> Pif1	This study
pMB348 ^d	Schizosaccharomyces pombe Pfh1	This study
pMB363 ^d	S. pombe Pfh1-KA	This study

Table S8. Plasmids

^a Plasmid backbone = pMB116.
^b Plasmid backbone = pRS415.
^c Plasmid backbone = pRS258.
^d Plasmid backbone = pRS424.
*A gift from Elizabeth Sockett (University of Nottingham).

References

- 1. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*. *Genetics* **122**, 19-27 (1989).
- 2. Schulz, V.P. & Zakian, V.A. The *Saccharomyces PIF1* DNA helicase inhibits telomere elongation and *de novo* telomere formation. *Cell* **76**, 145-155 (1994).
- 3. Azvolinsky, A., Dunaway, S., Torres, J., Bessler, J. & Zakian, V.A. The *S. cerevisiae* Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. *Genes Dev* **20**, 3104-3116 (2006).
- 4. Gueldener, U., Heinisch, J., Koehler, G.J., Voss, D. & Hegemann, J.H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. *Nucleic Acids Res* **30**, e23 (2002).
- 5. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in *Saccharomyces cerevisiae*. *Yeast* **14**, 953-961 (1998).
- 6. Boule, J.B. & Zakian, V.A. The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. *Nucleic Acids Res* **35**, 5809-5818 (2007).
- 7. Cejka, P. & Kowalczykowski, S.C. The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions. *The Journal of biological chemistry* **285**, 8290-301 (2010).
- 8. Harmon, F.G. & Kowalczykowski, S.C. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. *Genes Dev* **12**, 1134-1144 (1998).
- 9. Studier, F.W. Protein production by auto-induction in high density shaking cultures. *Protein expression and purification* **41**, 207-34 (2005).
- 10. Capra, J.A., Paeschke, K., Singh, M. & Zakian, V.A. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. *PLoS Comput Biol* **6**, e1000861 (2010).
- 11. Bachrati, C.Z. & Hickson, I.D. Analysis of the DNA unwinding activity of RecQ family helicases. *Methods Enzymol* **409**, 86-100 (2006).
- 12. Wong, I. & Lohman, T.M. A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. *Proc Natl Acad Sci U S A* **90**, 5428-32 (1993).
- 13. Brosh, R.M., Jr., Opresko, P.L. & Bohr, V.A. Enzymatic mechanism of the WRN helicase/nuclease. *Methods in enzymology* **409**, 52-85 (2006).
- 14. Putnam, C.D. & Kolodner, R.D. Determination of gross chromosomal rearrangement rates. *Cold Spring Harbor protocols* **2010**, pdb prot5492 (2010).
- 15. Hall, B.M., Ma, C.X., Liang, P. & Singh, K.K. Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. *Bioinformatics* **25**, 1564-5 (2009).
- 16. Kushnirov, V.V. Rapid and reliable protein extraction from yeast. *Yeast* **16**, 857-60 (2000).
- Runge, K.W. & Zakian, V.A. Introduction of extra telomeric DNA sequences into Saccharomyces cerevisiae results in telomere elongation. Mol. Cell. Biol. 9, 1488-1497 (1989).
- 18. Azvolinsky, A., Giresi, P., Lieb, J. & Zakian, V. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. *Mol Cell* **34**, 722-734 (2009).
- Paeschke, K., Capra, J.A. & Zakian, V.A. DNA Replication through G-Quadruplex Motifs Is Promoted by the Saccharomyces cerevisiae Pif1 DNA Helicase. *Cell* 145, 678-91 (2011).
- 20. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**, 402-8 (2001).

- 21. Law, M.J. et al. ATR-X syndrome protein targets tandem repeats and influences allelespecific expression in a size-dependent manner. *Cell* **143**, 367-78 (2010).
- 22. Mohaghegh, P., Karow, J.K., Brosh Jr, R.M., Jr., Bohr, V.A. & Hickson, I.D. The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases. *Nucleic Acids Res* **29**, 2843-2849 (2001).
- 23. Sun, H., Karow, J., Hickson, I. & Maizels, N. The Bloom's Syndrome Helicase Unwinds G4 DNA. J. Biol. Chem. 273, 27587-27592 (1998).
- 24. Popuri, V. et al. The Human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities. *J Biol Chem* **283**, 17766-17776 (2008).
- 25. Huber, M.D., Lee, D.C. & Maizels, N. G4 DNA unwinding by BLM and Sgs1p: substrate specificity and substrate-specific inhibition. *Nucl Acids Res.* **30**, 3954-3961 (2002).
- 26. Wu, Y., Sommers, J.A., Khan, I., de Winter, J.P. & Brosh, R.M., Jr. Biochemical characterization of Warsaw breakage syndrome helicase. *The Journal of biological chemistry* **287**, 1007-21 (2012).
- 27. Chakraborty, P. & Grosse, F. Human DHX9 helicase preferentially unwinds RNAcontaining displacement loops (R-loops) and G-quadruplexes. *DNA repair* **10**, 654-65 (2011).
- Masuda-Sasa, T., Polaczek, P., Peng, X.P., Chen, L. & Campbell, J.L. Processing of G4 DNA by Dna2 helicase/nuclease and replication protein A (RPA) provides insights into the mechanism of Dna2/RPA substrate recognition. *J Biol Chem* 283, 24359-24373 (2008).
- Gonzalez, V., Guo, K., Hurley, L. & Sun, D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. *The Journal of biological chemistry* 284, 23622-35 (2009).
- 30. London, T.B. et al. FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. *J Biol Chem* **283**, 36132-36139 (2008).
- 31. Baran, N., Pucshansky, L., Marco, Y., Benjamin, S. & Manor, H. The SV40 large Tantigen helicase can unwind four stranded DNA structures linked by G-quartets. *Nucleic acids research* **25**, 297-303 (1997).
- 32. Tuesuwan, B. et al. Simian virus 40 large T-antigen G-quadruplex DNA helicase inhibition by G-quadruplex DNA-interactive agents. *Biochemistry* **47**, 1896-909 (2008).
- 33. Ribeyre, C. et al. The yeast Pif1 helicase prevents genomic instability caused by Gquadruplex-forming CEB1 sequences *in vivo*. *PLoS Genet* **5**, e1000475 (2009).
- 34. Sanders, C.M. Human Pif1 helicase is a G-quadruplex DNA binding protein with Gquadruplex DNA unwinding activity. *Biochem J* (2010).
- 35. Wu, X. & Maizels, N. Substrate-specific inhibition of RecQ helicase. *Nucleic acids research* **29**, 1765-71 (2001).
- 36. Giri, B. et al. G4 resolvase 1 tightly binds and unwinds unimolecular G4-DNA. *Nucleic acids research* **39**, 7161-78 (2011).
- Lattmann, S., Giri, B., Vaughn, J.P., Akman, S.A. & Nagamine, Y. Role of the amino terminal RHAU-specific motif in the recognition and resolution of guanine quadruplex-RNA by the DEAH-box RNA helicase RHAU. *Nucleic acids research* 38, 6219-33 (2010).
- 38. Shum, K.T. & Tanner, J.A. Differential inhibitory activities and stabilisation of DNA aptamers against the SARS coronavirus helicase. *Chembiochem : a European journal of chemical biology* **9**, 3037-45 (2008).
- 39. Fry, M. & Loeb, L.A. Human Werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. *J. Biol. Chem.* **274**, 12797-12802 (1999).
- 40. Boule, J., Vega, L. & Zakian, V. The Yeast Pif1p helicase removes telomerase from DNA. *Nature* **438**, 57-61 (2005).