SUPPLEMENTARY MATERIAL

SUPPLEMENTARY FIGURES

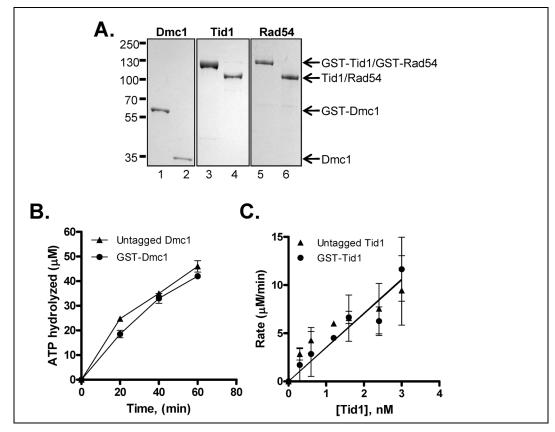


FIGURE S1. The N-terminal GST-tag does not inhibit the ATPase activity of Dmc1 or Tid1. *A*, Image showing GST-tagged and untagged versions of Dmc1, Tid1 and Rad54 proteins resolved by 10% SDS-PAGE. *B*, ssDNA-dependent ATPase activity of untagged and tagged Dmc1 (2 μ M each) and poly dT (10 μ M nt) as a function of time measured using standard conditions. *C*, dsDNA-dependent ATPase activity of untagged and tagged Tid1 with pUC19 scDNA (0.8 μ M bp) as a function of protein concentration, measured using standard conditions with the exception that the ATP-regenerating system was omitted. Both experiments are TLC assays and the concentration of ATP was 1 mM. The apparent k_{cat} values were derived from a linear fit to the data points using GraphPad Prism version 5. Error bars indicate standard deviation from 2 independent experiments and are smaller than the symbols when not evident.

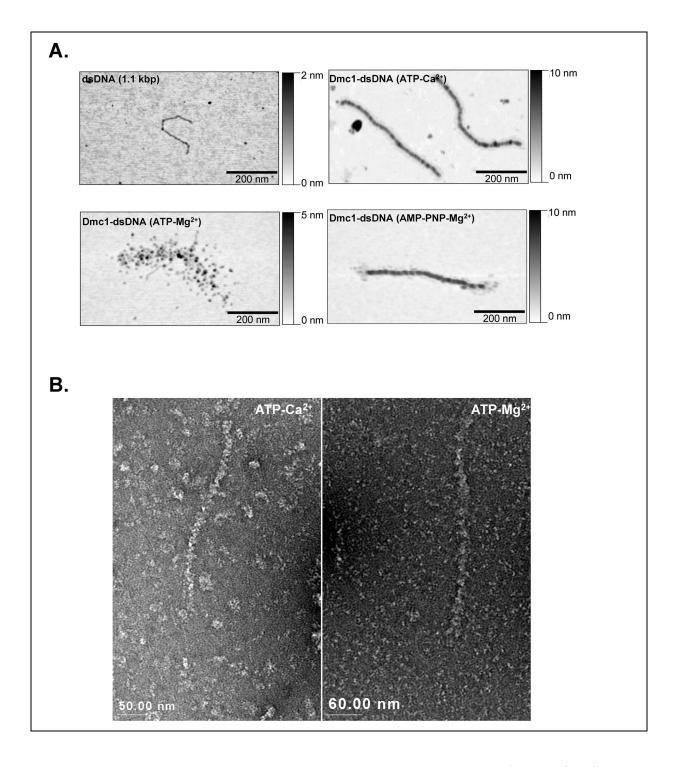


FIGURE S2. **AFM and EM images of Dmc1-dsDNA complexes.** *A*, AFM images showing Dmc1-dsDNA complexes. Representative images of dsDNA and Dmc1-dsDNA (in ATP-Ca²⁺, ATP-Mg²⁺ and AMP-PNP-Mg²⁺) are shown. *B*, EM images showing Dmc1-dsDNA complexes formed in ATP-Ca²⁺ and ATP-Mg²⁺.

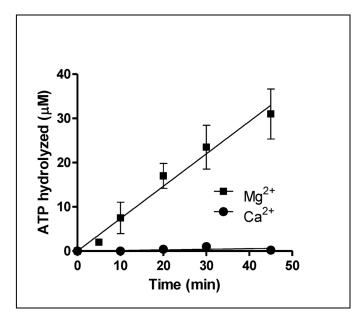


Figure S3. **Dmc1 cannot hydrolyze ATP in Ca²⁺-containing buffer.** Time course of ssDNAdependent ATP hydrolysis by Dmc1 in the presence of Ca^{2+} or Mg^{2+} . The concentration of ATP was 1 mM. Error bars indicate standard deviation from at least 3 independent experiments and are smaller than the symbols when not evident.

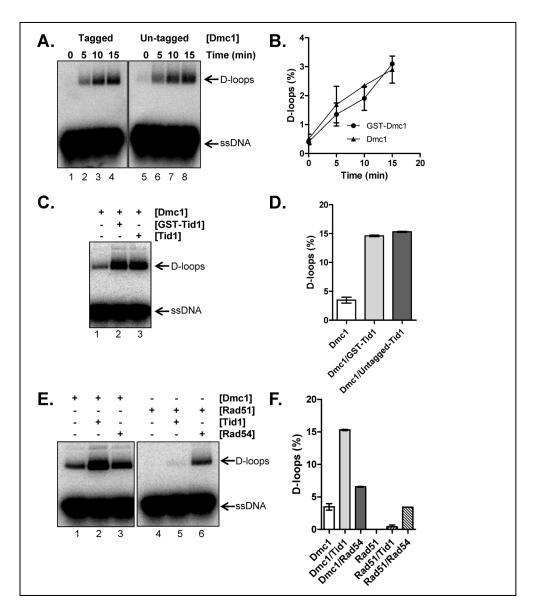


FIGURE S4. The specificity of stimulation of DNA joint molecule formation is unaltered when untagged proteins are used. *A*, Time course for D-loop formation catalyzed by GSTtagged and untagged Dmc1. *C*, Formation D-loop by untagged Dmc1 is stimulated by GSTtagged Tid1 to the same extent as by untagged Tid1. *E*, The untagged proteins exhibit similar specificities of stimulation in joint molecule formation as the GST-tagged proteins (Figures 5 and 7). *B*, *D*, and *F*, Graphical representation of data from *A*, *C*, and *E*, respectively. All reactions were performed in 5 mM Ca²⁺. The incubation times in panels *C* to *F* were 15 min. The positions of free ssDNA and D-loops are indicated. Error bars indicate standard deviation from 2 independent experiments and are smaller than the symbols when not evident.

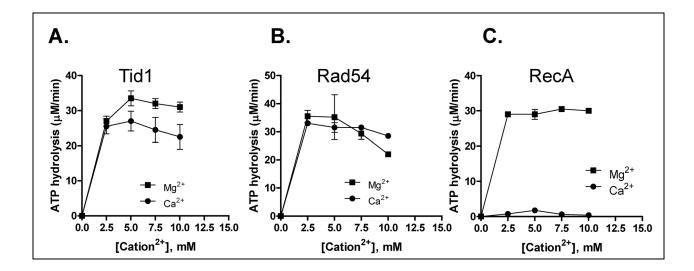


Figure S5. Tid1 and Rad54 can hydrolyze ATP in Mg^{2+} as well as Ca^{2+} -containing buffers. ATPase activities of Tid1 (*A*) and Rad54 (*B*) (10 nM each) measured as a function of Mg^{2+} and Ca^{2+} . The concentration of pUC19 scDNA was 2.5 μ M bp. *C*, ATPase activity of RecA (1 μ M) measured using the same buffers as in *A* and *B*. The concentration of ssDNA was 10 μ M nt. EDTA at a final concentration of 200 μ M was included in all three experiments. Error bars indicate standard deviation from 2 independent experiments and are smaller than the symbols when not evident.

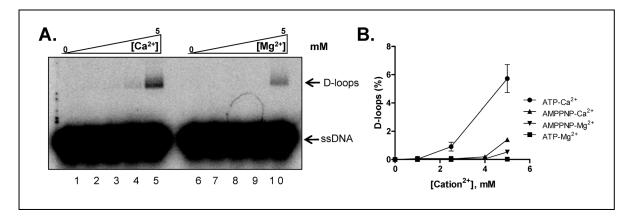


Figure S6. Ca^{2+} can stimulate Dmc1-dependent joint molecule formation even in the presence of the non-hydrolysable ATP analog, AMP-PNP. *A*, Formation of D-loops in the presence of AMP-PNP as a function of Ca^{2+} or Mg^{2+} , respectively. The positions of free ssDNA and D-loops are indicated. *B*, Graph showing D-loop formation as a function of either divalent cation in the presence of ATP or AMP-PNP. The positions of free ssDNA and D-loops are indicate standard deviation from 2 independent experiments and are smaller than the symbols when not evident.