'); //-->

Welcome Stephen Kowalczykowski

Faculty of **1000**

My F1000Browse the FacultiesTop 10sAdvanced SearchMy DetailsAbout F1000Faculty Member ListComposeEvaluation

DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P *Nature* 2003 May 15 **423**(6937):305-9 [abstract on PubMed] [related articles] [order article]

Selected by | Antony Carr NEW. / Dale Ramsden First evaluation 6 Jun 2003 | Latest evaluation 18 Jun 2003 Relevant Sections

Faculty Comments

Faculty Member

Antony Carr

University of Sussex, United Kingdom CELL BIOLOGY

👁 New Finding

Comments

This paper elucidates the role played by Srs2 helicase in negatively regulating recombination in yeast cells. In vitro, purified Srs2 helicase reverses the formation of Rad51 filaments. In addition, loss of Srs2 in yeast cells causes a hyper-recombination phenotype and under specific circumstances appears to prevent cells from completing repair. These data, together with those from Veaute et al. (Nature 2003, 423:309 [PMID: 12748645]), provide mechanistic insight into srs2 mutant phenotypes.

Evaluated 18 Jun 2003 NEW

Dale Ramsden

0, United States STRUCTURAL BIOLOGY

Krejci et al (and a similar work by Veaute et al {1} published in the same issue) provide a satisfying mechanistic explanation for the "anti-recombination" activity of certain DNA helicases. They show that the yeast DNA helicase SRS2 disrupts protein-DNA filaments containing rad51 and ssDNA, a critical intermediate in recombination. {1} Veaute et al. Nature 2003, 423:309-12 [PMID:12748645].

Evaluated 6 Jun 2003

Published by

Faculty Comments

BioMed Central

© 1999-2003 Biology Reports Ltd unless otherwise stated < info@facultyof1000.com > Terms and conditions