Supplemental Data

The BRC Repeats of BRCA2 Modulate

the DNA Binding Selectivity of RAD51

Aura Carreira, Jovencio Hilario, Ichiro Amitani, Ronald J. Baskin, Mahmud K.K. Shivji, Ashok R. Venkitaraman, and Stephen C. Kowalczykowski

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Protein expression and purification.

BRC4, $\Delta 1524-30$ peptides (Figure S1A) and T1526A mutant peptide were cloned into pGEX-6-1 (Amersham Biosciences), and the GST-tagged BRC4, J1524-30 and T1526A fusions were expressed in BL21 (DE3) cells. For each protein, about 8 g of cell paste from 3 liters of culture were suspended in 40 ml of PBS ($140 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}$, and $1.8 \mathrm{mM} \mathrm{KH} \mathrm{PO}_{4}$, pH 7.3) supplemented with 1 mM PMSF. The cells were disrupted using a French press. The crude lysate was clarified by centrifugation in a Beckmann Ti 45 rotor $35,000 \mathrm{rpm}, 60 \mathrm{~min}$, and the cleared lysate was applied to a 5 ml GSTrap HP column (Amersham) equilibrated with PBS buffer. The GST-fusion protein was eluted with 10 mM reduced glutathione and 50 mM TrisHCl (pH 8.0). The protein sample was then dialyzed against a buffer containing: 20 mM TrisHCl (pH 7.5), 1mM EDTA, 1mM dithiothreitol (DTT), and 10\% glycerol, and applied into a 6 ml Resource Q column (Amersham). The protein was eluted with a 60 ml 0 to 400 mM KCl gradient in the same buffer. The peptides were stored in buffer
containing: 20 mM TrisHCl (pH 7.5); 10\% glycerol; 0.5 mM EDTA; 0.5 mM DTT; and 200 mM KCl , and the concentration was determined using an extinction coefficient at 280 nm of $40,920 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, Figure S1C. To produce untagged peptides, the eluate from the GSTrap column (Amersham) was cleaved with PreScission protease and further purified using a HiTrap SP FF, 1 ml column (Amersham) equilibrated with: 20 mM HEPES buffer, (pH 7.0). The protein was eluted with a 20 ml gradient of 0 to 500 mM NaCl in the same buffer. Peptides were stored at $-80^{\circ} \mathrm{C}$ in the same buffer as above. Since the untagged peptides lack aromatic residues, the absorbance of the peptide bond was used to determine their concentration $(\mu \mathrm{g} / \mathrm{ml})$ from: $144\left(\mathrm{~A}_{215 \mathrm{~nm}}-\mathrm{A}_{225 \mathrm{~nm}}\right)$ (Segel, 1976). BRCA2 $2_{\text {BRC1-8 }}$ peptide was purified as previously described (Shivji et al., 2006).

Human RAD51 protein was expressed in a recA-deficient strain BLR (DE3) (Novagen) carrying plasmids pET15b-RAD51 and pLysS, kindly provided by Dr. P. Sung (Yale). The protein was purified essentially as described (Sigurdsson et al., 2001) with the following modifications: Pooled fractions from Q-sepharose were resuspended in buffer $\mathrm{K}(20 \mathrm{mM} \mathrm{KPO} 4$ (pH 7.3), 1 mM DTT, and 10 \% glycerol) and applied to a 20 ml hydroxyapatite (HA) column (Bio-Rad); the protein was eluted using a gradient of 20 to $400 \mathrm{mM} \mathrm{KPO}_{4}$. Pooled fractions from HA column were dialyzed against Resource Q loading buffer (20 mM TrisOAc (pH 7.5), $200 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM} \mathrm{DTT}, 0.1 \mathrm{mM}$ EDTA, and 10% glycerol). The dialyzed fraction was loaded onto a 6 ml Resource Q column and RAD51 was eluted with a gradient of 120 ml 200 to 600 mM KCl . Final pooled fractions were dialyzed against storage buffer (50 mM TrisOAc (pH 7.5), $200 \mathrm{mM} \mathrm{KCl}, 1$
mM DTT, 0.1 mM EDTA, and 50\% glycerol). RAD51 was stored in aliquots at -80 ${ }^{\circ} \mathrm{C}$. The concentration was determined using an extinction coefficient at 280 nm $\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 12,800$.

Human RPA was purified from pET11d-tRPA, kindly provided by Dr. M. Wold (University of Iowa). The RPA was expressed in E. coli strain BL21 (DE3) pLysS and purified following a protocol kindly provided by Drs. Kendall Knight and Michael Meuse (University of Massachusetts Medical Center): 5.5 g of cell paste from three liters of culture were harvested by centrifugation at 5000 g for 15 min and resuspended in 40 ml of lysis buffer (25 mM Tris- HCl (pH 7.5), 0.25 mM EDTA, 0.01% Nonidet, 1 mM DTT, and 0.5 mM PMSF). The sample was incubated with lysozyme ($0.2 \mathrm{mg} / \mathrm{ml}$) at $4^{\circ} \mathrm{C}$ for 30 min . The cells were disrupted by passage through French press. The lysate was then centrifuged at 35,000 rpm for 1h in a Beckmann Ti 45 rotor and the supernatant was loaded onto a 45 ml Affigel Blue column (Bio-Rad) in buffer A (25 mM TrisHCl (pH 7.5), 1mM EDTA, 10% glycerol, and 1 mM DTT) with 0.5 M NaCl . The column was washed with 0.5 M NaCl in buffer A, followed by 0.8 M NaCl in buffer A. RPA was eluted with 45 ml of 2.5 M NaCl in buffer A plus 40% ethylene glycol. The purest fractions were pooled and loaded onto a 30 ml ssDNA cellulose column (Amersham) equilibrated in buffer A with 0.5 M NaCl . The column was washed with 30 ml of 0.5 M and then 0.75 M NaCl in buffer A ; RPA was eluted with 1.5 M NaCl in buffer A plus 50\% ethylene glycol. The protein fractions were dialyzed against buffer A with 100 mM NaCl . Finally, the pooled fractions from the ssDNAcellulose were loaded onto a 6 ml Resource Q column (Amersham) equilibrated
in buffer A with 100 mM NaCl . The same buffer was used to wash after loading the sample and the protein was eluted with a gradient of 100 to 400 mM NaCl . The purest fractions were pooled and dialyzed against storage buffer (20 mM Tris- HCl (pH 7.5), $100 \mathrm{mM} \mathrm{NaCl}, 20 \%$ glycerol, 1 mM EDTA, and 1 mM DTT) and stored at $-80^{\circ} \mathrm{C}$. The concentration was determined using an extinction coefficient at 280 nm of $88,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

Supplemental References

Segel, I.H. (1976). Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry, 2nd Edition edn (New York, Wiley).

Shivji, M.K., Davies, O.R., Savill, J.M., Bates, D.L., Pellegrini, L., and Venkitaraman, A.R. (2006). A region of human BRCA2 containing multiple BRC repeats promotes RAD51-mediated strand exchange. Nucleic Acids Res. 34, 4000-4011.

Sigurdsson, S., Trujillo, K., Song, B., Stratton, S., and Sung, P. (2001). Basis for avid homologous DNA strand exchange by human Rad51 and RPA. J Biol Chem 276, 8798-8806.

Supplemental Figures

A

B
RAD51-BRC4

RAD51- $\mathbf{1 1 5 2 4 - 3 0}$

C

Figure S1. The BRC repeats of BRCA2 protein. (A) Schematic representation of BRCA2 protein indicating the BRC repeats and C-terminal domains that interact with RAD51. The amino acid sequence of the 35 amino acid peptide corresponding to the BRC4 repeat (amino acids 1517-1551) is indicated. The most conserved region of the BRC4 motif is shaded in gray. The deletion mutant peptide is also shown and the deleted amino acids are represented by a dashed line. The point mutation of mutant peptide T1526A is highlighted in red. (B) Structure of RAD51-BRC4 (pdb1n0w). RAD51 is represented by the yellow space-filling and ribbon model, and BRC4 by the magenta ribbon model, showing the highly conserved amino acids deleted in $\Delta 1524-30$ in gray. (C) Purified proteins analyzed by SDS-PAGE and stained with Coomassie blue: GST-tagged BRC4 (4 $\mu \mathrm{g}$, lane 1), GST-tagged $\Delta 1524-30(4 \mu \mathrm{~g}$, lane 2), RAD51 (4 $\mu \mathrm{g}$, lane 3), heterotrimeric RPA (4 $\mu \mathrm{g}$, lane 4), GST-tagged T1526A (4 $\mu \mathrm{g}$, lane 5). M_{r}, molecular mass markers.

Figure S2. Untagged BRC4 stimulates binding of RAD51 to ssDNA. BRC4, at the concentrations indicated, and RAD51 $(3 \mu \mathrm{M})$ were incubated for 15 min prior to addition of ${ }^{32} \mathrm{P}$-labeled dT_{40}, and further incubated for 1 h at $37^{\circ} \mathrm{C}$, as in Figure 1A. As a control, the untagged $\Delta 1524-30$ peptide was used at $40 \mu \mathrm{M}$. The reaction products were resolved by electrophoresis using 6\% polyacrylamide gels.

Figure S3. RPA does not affect the effect of BRC4 on the ssDNA-dependent ATPase activity of RAD51. RPA ($1 \mu \mathrm{M}$) or RPA storage buffer was preincubated with dT_{40} for 5 min at $37^{\circ} \mathrm{C}$ in the presence of 0.5 mM ATP and 4 mM MgCl_{2}. This was followed by the addition of RAD51 ($3 \mu \mathrm{M}$) and increasing concentrations of GST-BRC4, and further incubated for 1 h at $37^{\circ} \mathrm{C}$: (black circle), absence of RPA; (red circle), presence of RPA. The dashed line represents the DNA-independent rate of ATP hydrolysis by RAD51 (~0.2 $\mu \mathrm{M} / \mathrm{min})$.

Figure S4. Both tagged and untagged BRC4 inhibit binding of RAD51 to dsDNA. (A) Untagged BRC4 inhibits binding of RAD51 to dsDNA in the presence of Mg^{2+} and Ca^{2+}. BRC4, at the concentrations indicated, and RAD51 $(3 \mu \mathrm{M})$ were incubated for 15 minutes prior to addition of ${ }^{32}$ P-labeled linear $\phi \times 174$ dsDNA ($5 \mu \mathrm{M}$, nucleotides) and further incubated for 1 h at $37^{\circ} \mathrm{C}$ in the presence of ATP, Mg^{2+}, and Ca^{2+} as in Figure 3A. The same reaction was carried out with the lowest and highest concentration of the untagged control peptide, $\Delta 1524-30$. (B) GST-BRC4 inhibits binding of RAD51 to dsDNA in the presence of ATP and Ca^{2+}. GST-BRC4, or the control peptide, GST- $\Delta 1524-30$, at the concentrations indicated, and RAD51 ($3 \mu \mathrm{M}$) were incubated for 15 min prior to addition of ${ }^{32} \mathrm{P}$ labeled $\phi \mathrm{X} 174$ linear dsDNA ($5 \mu \mathrm{M}$, nucleotides) and further incubated for 1 h at $37{ }^{\circ} \mathrm{C}$ as in Figure 3 A , in the presence of ATP and Ca^{2+}. Protein-DNA complexes were resolved by electrophoresis in a 0.5 \% agarose gel, and analyzed by autoradiography.

Figure S5. Effect BRC4 or the control peptide, $\Delta 1524-30$, on DNA strand exchange promoted by RAD51. (A) The DNA substrates were circular $\phi \times 174$ ssDNA and linear dsDNA ($15 \mu \mathrm{M}$ in nucleotides) and RAD51 was $3.75 \mu \mathrm{M}$. The reaction mixtures were incubated for 2 hours at $37^{\circ} \mathrm{C}$ and stopped by deproteinization for 15 min at $37^{\circ} \mathrm{C}$. The products of the reaction were analyzed by electrophoresis in a 1\% agarose gel followed by autoradiography. (B) Quantification of the joint molecules (red square) and nicked circular dsDNA (black square) products using $3.75 \mu \mathrm{M}$ RAD51. Open symbols correspond to GST- $\Delta 1524-30$; filled symbols correspond to GST-BRC4. (C) DNA strand exchange reaction performed as in (A), except using $6 \mu \mathrm{M}$ RAD51. (D) Quantification of the joint molecules (red triangle) and nicked circular dsDNA
(black triangle) products using $6 \mu \mathrm{M}$ RAD51. Error bars represent standard errors as calculated from at least three independent experiments.

