Fig. S1. Generation of putative quinoproteins deletion mutants of *Deinococcus radiodurans* R1. Knockout plasmid constructs generated for the individual ORFs (Fig. S2) were linearized and transformed into *D. radiodurans* R1 and transformants were grown several generations in presence of selection antibiotics pressure. Genomic DNA from wild type (R) and perspective deletion mutants (M) of *dr0503, dr0766, dr1769, dr2518* and *drc0015* genes was used for PCR amplification of 500 bp internal fragment of corresponding gene (A) and 982bp *nptII* gene (B) using gene specific primers and sizes of products were estimated with molecular size marker on 1% agarose gel.
Fig. S2. Multiple sequence alignment of N-terminal portion of DR2518 (NP_296238.1) protein showing highest similarities with PknB (1MRU) and two other reference kinases from eukaryotes.
Fig. S3. Partial restriction map of constructs used for the generation of Δdr2518 (A), Δdr1769 (B), Δdr0766 (C), Δdr0503 (D) and Δdrc0015 (E) mutants of *Deinococcus radiodurans*.
Table S1. List of primers used in this study.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of primers</th>
<th>Nucleotide sequences of primers</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Expression plasmid construction</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2518F</td>
<td>5’AAAGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pGro2518</td>
</tr>
<tr>
<td>2</td>
<td>2518R</td>
<td>5’CTAGTCTAGACTACCTTCTCTGCTGCTT3’</td>
<td>pGro2518</td>
</tr>
<tr>
<td>3</td>
<td>2518PF</td>
<td>5’CGAAATTCCCATATGCGCCTGACCCCTGGA3’</td>
<td>pET2518</td>
</tr>
<tr>
<td>4</td>
<td>2518PR</td>
<td>5’CGGATACCTACCTCTCTGCTGCT3’</td>
<td>pET2518</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integration plasmid construction</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2518UF</td>
<td>5’GGCGGGCCCGCTGCGCTGACCCCTGGA3’</td>
<td>pNOK2518</td>
</tr>
<tr>
<td>6</td>
<td>2518UR</td>
<td>5’CGGATACCTACCTCTCTGCTGCT3’</td>
<td>pNOK2518</td>
</tr>
<tr>
<td>7</td>
<td>2518DF</td>
<td>5’CGGATACCTACCTCTCTGCTGCT3’</td>
<td>pNOK2518</td>
</tr>
<tr>
<td>8</td>
<td>2518DR</td>
<td>5’CGGATACCTACCTCTCTGCTGCT3’</td>
<td>pNOK2518</td>
</tr>
<tr>
<td>9</td>
<td>1769UF</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK1769</td>
</tr>
<tr>
<td>10</td>
<td>1769UR</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK1769</td>
</tr>
<tr>
<td>11</td>
<td>1769DF</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK1769</td>
</tr>
<tr>
<td>12</td>
<td>1769DR</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK1769</td>
</tr>
<tr>
<td>13</td>
<td>503UF</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK503</td>
</tr>
<tr>
<td>14</td>
<td>503UR</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK503</td>
</tr>
<tr>
<td>15</td>
<td>503DF</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK503</td>
</tr>
<tr>
<td>16</td>
<td>503DR</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK503</td>
</tr>
<tr>
<td>17</td>
<td>766UF</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK766</td>
</tr>
<tr>
<td>18</td>
<td>766UR</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK766</td>
</tr>
<tr>
<td>19</td>
<td>766DF</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK766</td>
</tr>
<tr>
<td>20</td>
<td>766DR</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK766</td>
</tr>
<tr>
<td>21</td>
<td>C15UF</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK0015</td>
</tr>
<tr>
<td>22</td>
<td>C15UR</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK0015</td>
</tr>
<tr>
<td>23</td>
<td>C15DF</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK0015</td>
</tr>
<tr>
<td>24</td>
<td>C15DR</td>
<td>5’GGCGGGCCCATGCCGCTGACCCCTGGA3’</td>
<td>pNOK0015</td>
</tr>
<tr>
<td>25</td>
<td>PqqE UpF</td>
<td>5’-CTAGGGGCGGAGTACCGCTGCT3’</td>
<td>pNOKpqE</td>
</tr>
<tr>
<td>26</td>
<td>PqqE UpR</td>
<td>5’-CTAGGGGCGGAGTACCGCTGCT3’</td>
<td>pNOKpqE</td>
</tr>
<tr>
<td>27</td>
<td>PqqE DnF</td>
<td>5’-CTAGGGGCGGAGTACCGCTGCT3’</td>
<td>pNOKpqE</td>
</tr>
<tr>
<td>28</td>
<td>PqqE DnR</td>
<td>5’-CTAGGGGCGGAGTACCGCTGCT3’</td>
<td>pNOKpqE</td>
</tr>
<tr>
<td>29</td>
<td>CatF</td>
<td>5’-AACTCGAGTACCGCTGCTGCTGCT3’</td>
<td>PPQCAT</td>
</tr>
<tr>
<td>30</td>
<td>CatR</td>
<td>5’-AACTCGAGTACCGCTGCTGCTGCT3’</td>
<td>PPQCAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mutants screening</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>DR100F</td>
<td>5’CGTTCACAGTCACAGGCTGACCCCTGGA3’</td>
<td>dr2518 internal</td>
</tr>
<tr>
<td>26</td>
<td>DR101R</td>
<td>5’CTGTTCTGCTGCTGCTGCTGCT3’</td>
<td>dr2518 internal</td>
</tr>
<tr>
<td>27</td>
<td>DR102F</td>
<td>5’CTGTTCTGCTGCTGCTGCTGCT3’</td>
<td>dr1769 internal</td>
</tr>
<tr>
<td>28</td>
<td>DR103R</td>
<td>5’CTGTTCTGCTGCTGCTGCTGCT3’</td>
<td>dr1769 internal</td>
</tr>
<tr>
<td>29</td>
<td>DR104F</td>
<td>5’CTGTTCTGCTGCTGCTGCTGCT3’</td>
<td>drc0015 internal</td>
</tr>
<tr>
<td>30</td>
<td>DR105R</td>
<td>5’CTGTTCTGCTGCTGCTGCTGCT3’</td>
<td>drc0015 internal</td>
</tr>
<tr>
<td>31</td>
<td>DR106F</td>
<td>5’CTGTTCTGCTGCTGCTGCTGCT3’</td>
<td>drc0015 internal</td>
</tr>
<tr>
<td>32</td>
<td>DR107R</td>
<td>5’CTGTTCTGCTGCTGCTGCTGCT3’</td>
<td>drc0015 internal</td>
</tr>
<tr>
<td>33</td>
<td>DR108F</td>
<td>5’CTGTTCTGCTGCTGCTGCTGCT3’</td>
<td>drc0015 internal</td>
</tr>
<tr>
<td>34</td>
<td>DR109R</td>
<td>5’CTGTTCTGCTGCTGCTGCTGCT3’</td>
<td>drc0015 internal</td>
</tr>
<tr>
<td>35</td>
<td>pqqE F</td>
<td>5’ATGGTGGGCGGATTTCTGCTGCTGCT3’</td>
<td>PqqE:cat</td>
</tr>
<tr>
<td>36</td>
<td>pqqE R</td>
<td>5’TCATGCGTGAATCAGCTGCTGCTGCT3’</td>
<td>PqqE:cat</td>
</tr>
</tbody>
</table>