The Mutant recBCD Enzyme, recB^{2109}CD Enzyme, Has Helicase Activity but Does Not Promote Efficient Joint Molecule Formation in Vitro

Angela K. Eggleston and Stephen C. Kowalczykowski†

Department of Cell, Molecular & Structural Biology
Northwestern University Medical School
Chicago, IL 60611, U.S.A.

and

Division of Biological Sciences
Sections of Microbiology and of Molecular Biology
Cell Biology & Biochemistry
University of California
Davis, CA 95616-8065, U.S.A.

(Received 26 August 1992; accepted 29 January 1993)

The *Escherichia coli* recB^{2109}CD enzyme displays a defect in homologous recombination. *In vitro*, it possesses significant levels of non-specific nuclease activity but is deficient in χ-dependent nicking activity. To determine whether an alteration in helicase activity contributes further to its *in vitro* defect, the ability of recB^{2109}CD enzyme to unwind dsDNA was examined. The mutant enzyme is able to unwind DNA but has a k_{cat} which is one-third that of the wild-type enzyme. While the K_m for DNA ends of the wild-type and mutant enzymes at low NaCl concentration are essentially equivalent, the K_m for ATP of recB^{2109}CD enzyme is nearly six times greater. The processivity of unwinding (i.e. the average length of DNA unwound before recB^{2109}CD enzyme dissociates from the DNA substrate) at 1 mM-Mg^{2+} ion and 1 mM-ATP is approximately 13 kb/endo, whereas that of wild-type recBCD enzyme is 30 kb/endo. In an assay which requires the co-ordinate actions of the recBCD, recA, and SSB proteins, joint molecule formation in the presence of recB^{2109}CD enzyme is up to sixfold slower and proceeds to a lower extent than that mediated by the wild-type enzyme. We conclude that although the reduced helicase activity of the mutant recBCD enzyme may contribute to its recombination deficiency, its defect in the χ-dependent attenuation of non-specific nuclease activity is primarily responsible for the recombination-deficiency of *E. coli* strains bearing the recB^{2109} mutation.

Keywords: recBCD enzyme; DNA helicase; ATP-dependent nuclease; genetic recombination

1. Introduction

RecBCD enzyme is a three subunit, 330 kDa protein involved in genetic recombination in *Escherichia coli*. Although first identified as an ATP-dependent nuclease active on several types of substrates, recBCD enzyme is also a highly active DNA helicase (for reviews, see Taylor, 1988; Smith, 1990). As demonstrated in the accompanying paper, a mutant recBCD enzyme, designated recB^{2109}CD enzyme, has all of the known non-specific nuclease activities (ssDNA‡ endonuclease, ds- and ssDNA exonuclease) of wild-type recBCD enzyme but fails to specifically nick at χ sites *in vitro* (Eggleston & Kowalczykowski, 1993). Because the ability to unwind dsDNA is required for the recognition of χ by recBCD enzyme (Taylor et al., 1985), we have

Abbreviations used: ds, double-stranded; ss, single-stranded; SSB protein, *E. coli* single-stranded DNA binding protein; Mg(OAc)_2, magnesium acetate; PEP, phosphoenolpyruvate; χ, Chi sequence (5'-GCTGCTGG-3'); form I, supercoiled DNA; form II, nicked circular dsDNA; form III, linear dsDNA; TCA, trichloroacetic acid.

† Author to whom correspondence should be addressed.
extended our characterization of this enzyme to encompass an examination of its helicase activity in a further attempt to account for the rec− phenotype of recB2109 strains.

Wild-type recBCD enzyme initiates unwinding on linear duplex DNA substrates having blunt ends or ssDNA tails less than 25 nucleotides in length (Taylor & Smith, 1985). As it unwinds the DNA, recBCD enzyme forms one of two structures (Taylor & Smith, 1980; Telander Muskavitch & Linn, 1982). In the absence of SSB protein, a twin-loop structure results from renamelling of the unwound strands behind the enzyme. When SSB protein is present, a loop-tail structure having two ssDNA tails is produced. The helicase activity of wild-type recBCD enzyme is both rapid (≈ 1000 bp unwound s−1 at 37°C; Roman & Kowalczykowski, 1989a) and highly processive, with an average of 30 kb unwound per binding event (Roman et al., 1992). Unwinding is an ATP-dependent process, and two to three ATP molecules are hydrolyzed for each base-pair unwound (Roman & Kowalczykowski, 1989b).

RecBCD enzyme nicks DNA specifically at the χ sequence, which enhances recombination in a polar fashion (Pontecelli et al., 1985; Taylor et al., 1985). Since, as noted above, this nicking is dependent upon the ability of the enzyme to translocate through the χ-containing DNA, both the helicase activity and the sequence-specific nicking activity are presumed to be involved in promoting recombination (Smith & Stahl, 1985). The only recBCD enzyme mutants yet identified which are recombination-proficient yet apparently have no nuclease activity and minimal helicase activity are the members of the 6 class, which are proposed to act by a different mechanism (Smith, 1987; Lovett et al., 1988; Lloyd et al., 1988; Thaler et al., 1989) have presented evidence to suggest that the activity of the 6 enzyme is similar to that of the wild-type enzyme after it has encountered χ. Smith and co-workers first proposed a model which incorporated these two activities of recBCD enzyme (Smith et al., 1981,1984,1987). In this model, recBCD enzyme gains entry to a DNA molecule via a double-strand break and initiates unwinding. When the enzyme encounters a χ site in the correct orientation (i.e. from the 3′ side of a χ sequence oriented as 5′-GGTGGTGG 3′), it nicks the DNA 4 to 6 bp to the 3′ side of the site. As recBCD enzyme continues to unwind beyond the site, this strand is extruded as a 3′ single-stranded tail. RecA protein, the DNA strand exchange protein of E. coli, binds to this ssDNA, and the recA protein–ssDNA complex then invades a recipient duplex molecule, producing a joint molecule. This heteroduplex DNA is extended by recA protein-mediated branch migration and by the continued unwinding of the donor dsDNA by recBCD enzyme.

In vitro studies support and extend the tenets of this recombination initiation model (Roman & Kowalczykowski, 1989; Wang & Smith, 1989; Roman et al., 1991; Dixon & Kowalczykowski, 1991). RecA protein can promote the formation of heteroduplex DNA between DNA substrates that are homologous and that contain a region of ssDNA within the homologous sequences (West et al., 1981; Cox & Lehman, 1987); if both DNA molecules are duplex, however, unwinding of a linear dsDNA molecule is a prerequisite to recA protein-dependent pairing. One assay which models the linkage between recBCD enzyme- and recA protein-dependent activities in the formation of heteroduplex DNA employs linear dsDNA and circular ssDNA molecules (Roman & Kowalczykowski, 1989c). In the presence of recBCD enzyme, the linear dsDNA is unwound, and the liberated ssDNA is trapped by recA and SSB proteins. The renaturation activity of recA protein then renames the complementary ssDNA, producing joint molecules. Along a similar vein, recBCD enzyme incubated in the presence of two homologous but distinguishable linear dsDNA substrates produces ssDNA fragments that can be bound by SSB protein; the subsequent addition of recA protein promotes rapid renaturation of the ssDNA with concomitant formation of heteroduplex DNA (Wang & Smith, 1989). When linear and supercoiled dsDNA molecules are incubated in the presence of recA protein, recBCD enzyme, and SSB protein, recBCD enzyme helicase activity is required to generate the ssDNA fragments which can be utilized by recA protein to form D-loop molecules with the supercoiled substrate (Roman et al., 1991; Dixon & Kowalczykowski, 1991). Additionally, joint molecule formation in this reaction is influenced by the presence of a χ sequence in the donor molecule, further supporting the stimulatory role of χ in the recombination process (Dixon & Kowalczykowski, 1991). Since each of these reactions is dependent upon the presence of recBCD enzyme, such studies have provided strong evidence for a role of the helicase and χ-cutting activities of recBCD enzyme in the initiation of homologous recombination.

Our studies using purified recB2109CD enzyme have found that the helicase activity of the mutant enzyme is ~ threefold slower than that of wild-type recBCD enzyme and is more sensitive to the concentration of ATP cofactor. The unwinding of duplex DNA by recB2109CD enzyme is also less processive than that catalyzed by wild-type recBCD enzyme. Although recB2109CD enzyme has what would appear to be significant levels of helicase activity, it nevertheless generates ssDNA which is not utilized efficiently in the formation of joint molecules by recA protein. The relationship between these in vitro observations and the in vivo recombination-deficiency of recB2109 strains is discussed.

2. Materials and Methods

(a) Nucleic acids

M13mp7 ss- and dsDNAs, phR322 (χ+) and χ−F) (Taylor et al., 1985), and 3H-labeled phR322 were puri-
HelaCastle Activity of recB2109CD Enzyme

M13 DNA (an amount of DNA equivalent to 10 μM nucleotide or 0.69 nM-molecule in a 350 μl vol.) was preincubated at 37°C; DNA unwinding was initiated by the addition of recB2109CD enzyme. At a time just sufficient for the completion of unwinding (as determined by performing the same reaction in the fluorometric assay), the reaction was stopped by the addition of 2 μl of 0.5 M-EDTA. The unwound DNA was then heat-denatured at 95°C for 8 min and was quenched in an ice water bath. This denatured DNA (42 μl) was added to a cuvette containing 308 μl of the same buffer with 2.27 μM-SSB protein (equivalent to 2 μM in 350 μl). The change in fluorescence after addition of the denatured DNA (accounting for the decrease in SSB protein fluorescence due to dilution) was measured and was compared to that obtained when heat-denatured linear dsDNA not exposed to recB2109CD enzyme was used. This difference yielded the percentage of maximal possible quenching under a particular set of conditions. These controls were conducted for each extreme of condition (high and low concentration of ATP: high and low concentration of Mg2+; with and without 1 mM-Ca2+; with and without SSB protein present during the unwinding; varying temperature). The percentage of maximum possible quenching obtained for recB2109CD enzyme ranged from 100% in the presence of Ca2+ to 40% in the presence of 4 mM-Mg2+. The values for wild-type recB2109CD enzyme ranged from 100% in the presence of Ca2+ to 70% in the presence of 4 mM-Mg2+. For any particular set of conditions, DNA exposed to the mutant enzyme was consistently degraded to a greater extent as judged by the ability to bind SSB protein.

These results appear to contradict our studies in which we found that the rate of TCA solubilization of duplex DNA by the mutant enzyme was less than that of the wild-type enzyme (Engelstein & Kowalczykowski, 1993). As we stated in that paper, however, we believe that the TCA solubility assay measures nuclease activities which occur during unwinding as well as subsequent to it. It is possible that the mutant enzyme generates smaller, although not necessarily TCA soluble, oligonucleotides under the conditions used in the helicase assay, in which SSB protein is present to reduce subsequent degradation of the unwound strands by the ssDNA specific nuclelease activities of the enzyme. This situation could account for the apparent greater degradation of the substrate by the mutant enzyme in the helicase assay controls than are indicated by the TCA solubility assay.

(d) Unwinding processivity assays

The processivity of unwinding by recB2109CD enzyme was determined in 2 ways as previously described for wild-type recB2109CD enzyme (Roman et al., 1992). For the first method, the fluorometric assay was performed under standard conditions using DNA molecules of varying lengths: phage T7 DNA (399 kb) and phage N4 DNA (72 kb). The concentration of DNA molecules (0.69 nM) in the reaction was constant for each DNA substrate; consequently, the molar nucleotide concentration (55.5 μM-nucleotide for T7 and 99 μM-nucleotide for N4) and the concentration of SSB protein (11.1 μM and 198 μM, respectively), vary with the length of the DNA substrate. We consider the values for the processivity of the mutant enzyme obtained by this method to be approximate, as opposed to the more precise values obtained with the wild-type enzyme (Roman et al., 1992), because on these DNA molecules, recB2109CD enzyme sometimes displays a short lag before steady-state
unwinding is reached, unwinds at a slower rate than is observed with shorter DNA molecules such as pBR322 and M13, and does not reach a distinct end point (unpublished observation).

Second, a pulsed-field gel assay was used as a complementary means of examining the processivity of recB²¹⁰⁹CD enzyme by allowing direct visualization of the intact duplex DNA remaining at the completion of an unwinding reaction. As noted previously (Roman et al., 1992), this assay circumvents any potential artifacts introduced by recBCD enzyme-dependent nucleolytic activities. N4 DNA (99 μM-nucleotide; 0.69 nM-nucleotide) was incubated in standard buffer containing 19.6 μM-SSB protein. The reaction was equilibrated to 37°C, and unwinding was initiated by the addition of a saturating concentration of recB²¹⁰⁹CD enzyme (1-25 functional molecules/end). At the indicated times, a sample was removed, was added to 0.1 vol. 1% (w/v) SDS, and was stored on ice. After completion of the time course, 0.1 vol. 10 X S₁ nuclease buffer (300 mM-sodium acetate (pH 4.6), 500 mM-NaCl, 10 mM ZnCl₂, 50% glycerol) and 0.6 unit S₁ nuclease/ml (Pharmacia) were added to each sample. The samples were incubated at 37°C for 10 min, and the reaction was quenched by adding 5 X loading buffer (25% (w/v) Ficoll, 0.4% (w/v) bromophenol blue, 0.4% (w/v) xylene cyanol, 5% (w/v) SDS, 50 mM-EDTA) to 1 X. The dsDNA remaining after this treatment was separated by pulsed-field gel electrophoresis through a 1% (w/v) agarose gel in modified TBE (100 mM-Tris, 100 mM-boric acid, 2 mM-EDTA) at pulse times of 1 s for 3 h 20 min and 3 s for 17 h (see Roman et al., 1992, for details). To confirm that all of the DNA present was susceptible to the S₁ nuclease treatment, an equivalent amount of heat-denatured N4 DNA was treated in the same manner and was separated by pulsed-field gel electrophoresis. Essentially 100% of the heat-denatured DNA was degraded by this treatment (data not shown).

(c) Joint molecule formation assays

Two assays for the recBCD-enzyme dependent formation of joint molecules by recA protein have been described (Roman et al., 1991; Dixon & Kowalczykowski, 1991). For the nitrocellulose filter binding assay, the buffer contained 25 mM-Tris-acetate (pH 7.5), 1 mM-EDTA, 5 mM-ATP, 8 mM-MgOAc₂, 1.5 mM-PEP, 4 units pyruvate kinase/ml, 10 μM-nucleotide (1.04 μM-molecule) P₃₂III-digested pBR322 (x³²P or x³⁵S) DNA, 5 μM-nucleotide (0.32 μM-molecule) 32^P-labeled supercoiled pBR322 (x³²P) DNA, 133 μM-SSB protein, and 5 μM-recA protein. After pre-equilibration of the reaction mixture to 37°C, a sub saturating concentration of recBCD enzyme (0.1 functional molecule/end) was added to initiate the reaction. At the indicated time, 10 vol. D-loop buffer (2 M-NaCl, 150 mM-sodium citrate) was added to quench the reaction, which was then stored on ice. Within 10 min, the reaction was filtered through nitrocellulose disc (HAWP 025, Millipore) which had been soaked in D-loop buffer; the filter was then washed with 3 ml D-loop buffer. After drying, the filters were counted in 5 ml non-aqueous scintillation fluid (RP-1). Since the reactions were not stopped by the addition of SDS and incubation at 37°C, the presence of both paramemic and plectonomic molecules was measured (Riddles & Lehman, 1985). All values reported are the average of at least 2 experiments and have been corrected for the percentage of counts which are retained in the absence of both recA and recBCD proteins.

For the agarose gel assay, the reaction contained 25 mM-Tris-acetate (pH 7.5), 5 mM-ATP, 8 mM-MgOAc₂, 1 mM-EDTA, 2 mM-PEP, 16 units pyruvate kinase/ml, 40 μM-nucleotide (2.76 or 4.16 nM-molecule) linearized M13 or pBR322 (x³²P or x³⁵S) DNA, 20 μM-nucleotide (1.38 or 2.08 nM-molecule) supercoiled M13 or pBR322 (x³²P or x³⁵S) DNA, and 533 μM-SSB protein. After initiating the reaction by simultaneously adding 10 μM-recA protein and a substoichiometric amount of recBCD enzyme (0.025 functional molecule/end), time points were withdrawn at the indicated times and were added to 0.2 vol. 5 X loading buffer. To account for the lower helicase activity of recB²¹⁰⁹CD enzyme, the time points for the mutant enzyme reaction are longer than those for wild-type recBCD enzyme. The DNA was separated by electrophoresis through a 0.75% (w/v) agarose gel run in 1 X TAE at 2-1 V cm for 8 h and was visualized by ethidium bromide staining.

3. Results

(a) The helicase activity of recB²¹⁰⁹CD enzyme is attenuated

The helicase activity of the recB²¹⁰⁹CD enzyme was monitored using a continuous fluorometric assay described previously (Roman & Kowalczykowski, 1989a). The amount of functional recBCD enzyme in a protein preparation can be determined by performing a protein titration. The rate of unwinding increases with increasing protein concentration until a point is reached such that all DNA ends are saturated with active enzyme (see Roman & Kowalczykowski, 1989a). For recB²¹⁰⁹CD enzyme, saturation occurs at a protein concentration of 6.9 nM (data not shown) and at a V_{max} equal to 120 nM-bp unwound/s at 25°C (Table 1). The concentration of DNA ends in the reaction is 1.38 nM (i.e. 10 μM-nucleotide M13 DNA), resulting in an apparent stoichiometry of five recB²¹⁰⁹CD enzyme molecules/DNA end. Using this experi-

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Wild-type</th>
<th>recB<sup>2109</sup>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V<sub>max</sub></td>
<td>k<sub>unwind</sub></td>
</tr>
<tr>
<td></td>
<td>182 nM-bp s<sup>-1</sup></td>
<td>131 s<sup>-1</sup> (15°C)</td>
</tr>
<tr>
<td></td>
<td>231 s<sup>-1</sup> (25°C)†</td>
<td>87 s<sup>-1</sup> (25°C)</td>
</tr>
</tbody>
</table>

The reactions contained standard helicase buffer, 2 μM-SSB protein, and varying concentrations of recBCD enzyme. Unwinding was initiated by the addition of 10 μM-nucleotide (0.69 nM-molecule) linearized M13 DNA. The reactions were conducted at the indicated temperature.

† Because the rate of unwinding by the wild-type enzyme is difficult to measure accurately at saturating concentrations of enzyme at 25°C, this protein titration was performed at 15°C. Since variation in the reaction temperature affects primarily the rate of unwinding and does not significantly alter the K_a for the DNA substrate (Roman & Kowalczykowski, 1989), the Arrhenius equation was used to calculate the corrected K_a of the wild-type enzyme at 25°C.
mentally derived stoichiometry, the experimentally determined turnover number for maximum DNA unwinding can be corrected by dividing the observed rate by the observed stoichiometry; consequently, the corrected k_{cat} at 25°C is 87 nM-bp unwound/s per nM-functional recB2109CD enzyme (or 87 s$^{-1}$). For comparison, the kinetic parameters of the wild-type recBCD enzyme preparation used in these experiments are also given in Table 1. Thus, at 1 mM-ATP, the rate of unwinding by recB2109CD enzyme is approximately 2.7-fold lower than that of the wild-type enzyme. This result confirms the qualitative observation made using a crude cell lysate of a recB2109 strain that unwinding by the mutant enzyme is slower than that of the wild-type enzyme (Amundson et al., 1990).

(h) The concentration of mono- and divalent ions affects the unwinding of DNA by recB2109CD enzyme

The properties of wild type recBCD enzyme are affected by changes in the ionic environment. The effect of varying monovalent salt concentration on unwinding was therefore examined. An increase in NaCl concentration up to ~ 60 to 80 mM increases the apparent rate of unwinding catalyzed by recB2109CD enzyme (Fig. 1); above this salt concentration, the apparent unwinding rate decreases until all activity is abolished at or above 300 mM NaCl. A similar profile, which peaked at 100 mM NaCl, was observed with wild-type recBCD enzyme (Roman & Kowalczykowski, 1989a).

Raising the Mg$^{2+}$ concentration will affect both the stability of the duplex DNA and the dsDNA exonuclease activity of recBCD enzyme (Eggleston & Kowalczykowski, 1993). Due to the enhanced nuclease activity of recBCD enzyme under these conditions, these data must be corrected for changes in oligonucleotide production (see Materials and Methods). The helicase activity of recB2109CD enzyme, like that of wild-type recBCD enzyme (Roman & Kowalczykowski, 1989a), is significant across a broad range of Mg$^{2+}$ concentration (Fig. 2); unlike wild-type recBCD enzyme, however, the rate increases twofold when the Mg$^{2+}$ concentration is raised from 1 to 7 mM. This increase corresponds to the conditions at which the dsDNA exonuclease activity is most pronounced (Eggleston & Kowalczykowski, 1993).

(c) RecB2109CD enzyme has a K_m for DNA ends which is similar to that of wild-type recBCD enzyme at low salt concentration

Since variation in the monovalent ion concentration affected the apparent rate of unwinding of the mutant enzyme (Fig. 1), the DNA concentration in the helicase assay was varied at several salt concentrations to determine whether the concentration of salt also affects the apparent affinity of the enzyme for duplex DNA (Fig. 3A, B). In the absence of additional NaCl (i.e., at 4 mM-NaCl), the recB2109CD enzyme has an apparent K_m of 0.8 nM-DNA ends and a corrected k_{cat} of 253 s$^{-1}$ at 37°C (Table 2). This apparent K_m value is essentially equal to that obtained for the wild-type enzyme under these conditions (0.9 nM-DNA ends), while the corrected k_{cat} is ~ twofold lower than that of the wild-type enzyme (686 s$^{-1}$; Table 2). Thus, a
lower intrinsic unwinding rate rather than a lower apparent affinity for DNA ends contributes to the reduced unwinding activity of the mutant enzyme. Because it is likely that, as with the wild-type enzyme, \(K_d \ll K_m \) (Roman et al., 1992), these conditions should allow stoichiometric binding of the recoB\(^{110}\)CD enzyme to the DNA substrate. The effect of increased concentrations of NaCl on both the apparent binding affinity (\(K_m \)) and rate of unwinding (\(k_{cat} \)) was also examined (Table 2), like wild-type recBCD enzyme, moderate concentrations of salt (60 to 100 mM) increase the rate of unwinding as well as slightly reduce the affinity of the mutant enzyme for the ends of duplex DNA molecules, although the extent of this stimulation is not as great for the mutant enzyme.

Although it appeared that the mutant enzyme did not have an enhanced affinity for internal base-pairs which might compete for binding to the ends of the linear DNA, the effect of the addition of increasing concentrations of DNA having no ends (i.e. supercoiled DNA) was measured to test this possibility directly. If enhanced binding to internal DNA sites were a factor, then a progressive decrease in the observed rate of unwinding would be obtained upon increasing the concentration of supercoiled DNA. Unwinding reactions performed using a defined concentration of linear M13 DNA (10 \(\mu \)M nucleotide; 0.69 mM molecule) with varying concentrations of supercoiled DNA showed no significant decrease in either the rate or the extent of unwinding, however (data not shown).

(d) \(\text{RecB}^{110}\text{CD} \) enzyme helicase activity requires significantly higher concentrations of ATP than that of wild-type recBCD enzyme

The \(K_m \) for ATP of the mutant enzyme cannot be determined at saturating concentrations of DNA substrate because the \(K_m \) for DNA ends is too high to permit the use of DNA concentrations that are five- to tenfold in excess of the \(K_m \). Consequently, as employed for wild-type recBCD enzyme (Roman & Kowalczykowski, 1989a), the method of Florini & Vestling (1957) was used to derive the
Table 3

Effect of varying ATP concentration on enzymatic parameters of recB²¹⁰⁹CD enzyme helicase activity at different DNA concentrations

<table>
<thead>
<tr>
<th>[DNA] (nM-molecules)</th>
<th>K<sub>m,app</sub> (mM-ATP)</th>
<th>k<sub>cat, app</sub><sup>†</sup> (s<sup>−1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>1.0±0.2</td>
<td>111±12</td>
</tr>
<tr>
<td>0.69</td>
<td>0.9±0.1</td>
<td>123±5</td>
</tr>
<tr>
<td>1.04</td>
<td>2.2±0.2</td>
<td>245±15</td>
</tr>
</tbody>
</table>

The reactions contained 25 mM-Tris-acetate (pH 7.5), varying ATP concentration, 1 mM-Mg₂SO₄, 1 mM-DTT, SSB protein (1, 2, or 3 μM), and 2 mM-0.4 mM-functional recB²¹⁰⁹CD enzyme. Unwinding was initiated by the addition of linearized pBR322 DNA at 5, 10, or 15 μM-nucleotide (0.35, 0.69, or 1.04 nM-molecule) final concentration. The reactions were conducted at 35°C.

†The reported rate values are corrected for the apparent binding stoichiometry of the enzyme preparation (Table 1).

(c) The processivity of recB²¹⁰⁹CD enzyme is significantly less than that of wild-type recBCD enzyme

DNA unwinding by recBCD enzyme is processive, that is, more than a single base-pair is unwound per binding event. Two factors allow us to easily calculate the processivity of unwinding. First, each end of a DNA molecule can be acted upon only once, because recBCD enzyme cannot initiate unwinding on substrates having ssDNA tails > 25 nucleotides long (Taylor & Smith, 1985). Second, the presence of SSB protein traps the unwound strands and prevents their reannealing, which would otherwise allow the starting substrate to be reformed.

We can measure the processivity of recBCD enzyme helicase activity using the fluorometric helicase assay. In this assay, the extent of an unwinding reaction indicates the total percentage of DNA unwound on DNA molecules having two ends; thus, it is twice the average length which can be unwound during a single recBCD enzyme binding event (defined as N). If the length of the DNA molecule in the reaction is less than or equal to twice the value of N, all of the DNA is fully unwound. As the DNA length exceeds twice the value of N, however, the extent of the reaction falls below 100% and N can be calculated. In the case of wild-type recBCD enzyme, N is 30(±3) kb as determined from the unwinding of both phage N4 (72 kb) and phage T4 (160 kb) DNAs (Roman et al., 1992).

For recB²¹⁰⁹CD enzyme, N was determined at various ATP concentrations using both T7 (39 kb) and N4 (72 kb) phage DNAs. As was observed with wild-type recBCD enzyme (Roman et al., 1992), the processivity of recB²¹⁰⁹CD enzyme helicase activity is affected in a hyperbolic manner by the concentration of ATP (Fig. 5). N does not exceed ~12 kb/end at physiologically relevant ATP concentrations (1 to 3 mM) (Lowry et al., 1971; Mathews, 1972;
Figure 5. Effect of ATP on recB2109CD enzyme helicase activity processivity. The reaction was conducted at 25°C in standard helicase buffer, except that the ATP concentration was varied. The substrate DNA concentration was 0.69 nM·molecule, and SSB protein was included at a concentration in 3-fold excess to the amount required to bind the total concentration of ssDNA which could be produced. Unwinding was initiated by adding a saturating concentration of recB2109CD enzyme (8.6 nM; 1:25 functional molecules/end).

Bochner & Ames, 1982). Using data from the experiments with T7 DNA, the mutant enzyme has an apparent K_v (i.e. the concentration of ATP at which the processivity is one-half its maximal value) of 500 (± 210) μM·ATP and a limiting processivity of 12.4 (± 1.8) kb/end. With N4 DNA, these parameters are 570 (± 60) μM·ATP and 16.1 (± 0.6) kb/end, respectively. This K_v value is significantly greater than the K_v value of wild-type recBCD enzyme (41 (± 9) μM; Roman et al., 1992), while the value for limiting N is reduced ~3-fold (32 (± 1.8) kb; Roman et al., 1992).

To verify the value of N for recB2109CD enzyme obtained using the fluorometric assay, the size distribution of dsDNA products remaining at the end of an N4 DNA unwinding reaction was measured by pulsed-field gel analysis (Roman et al., 1992). In this assay, samples from a time course of unwinding are treated with S_1 nuclease to digest the unwound ssDNA tails, and the resultant duplex DNA products are separated by pulsed-field gel electrophoresis. This method allows us to examine directly the length of the DNA which has not been unwound; consequently, it is the converse of the fluorometric assay, in which the signal is generated by the presence of the unwound ssDNA. As shown in Figure 6, N4 DNA is partially unwound by recB2109CD enzyme at 1 mM·ATP and 1 mM-MgOAc\textsubscript{2}, and the peak of the distribution has a mobility less than that of the 48.5 kb standard, at ~50 to 55 kb dsDNA remaining (or 9 to 11 kb unwound/end). This result is in good agreement with that obtained by the fluorometric assay. The amount of intact DNA decreases over time, but the distribution of product molecules does not vary (Fig. 6), suggesting that, as expected, the mutant enzyme cannot reinitiate unwinding on previously unwound DNA molecules (Taylor & Smith, 1985). Although the size distribution extends to ~30 to 35 kb (or ~20 kb unwound/end), this is not inconsistent with the fluorometric results since N is merely the average, and not the maximum, length which the enzyme can unwind (see Roman et al., 1992).

Figure 6. Pulsed field gel analysis of recB2109CD enzyme helicase activity processivity. The reaction was conducted at 37°C in standard helicase buffer containing 99 μM nucleotide (0.69 nM·molecule) N4 DNA and 19.8 μM SSB protein. Unwinding was initiated by adding a saturating concentration of recB2109CD enzyme (8.6 nM; 1:25 functional molecules/end). Each time point was treated with S_1 nuclease to remove ssDNA tails; thus, the products separated on the gel are the duplex DNA remaining after the mutant enzyme dissociates. The molecular weight standards are indicated (lane S). Lanes 1 to 5 show the time course of unwinding at 0, 5, 10, 15, and 30 min, respectively.

(f) Joint molecule formation by recB2109CD enzyme is inefficient and is independent of the presence of χ sequences

Since the in vitro studies of recB2109CD enzyme did not reveal the absence of any nuclelease activity except χ-nicking (Eggleston & Kowalczykowski, 1993), and since the mutant enzyme appeared to have considerable helicase activity, the ability of recB2109CD enzyme to participate in the co-ordinated production of joint molecules was determined (Roman et al., 1991; Dixon & Kowalczykowski, 1991). The assays utilize DNA substrates, linear duplex and supercoiled DNA molecules, which require both the homologous pairing activity of recA protein and, minimally, the helicase activity of
Helicase Activity of recB²¹⁰⁹CD Enzyme

recB²¹⁰⁹CD enzyme to form joint molecules. The reaction is illustrated in Figure 7A.

In the first assay, a nitrocellulose filter binding assay, the formation of joint molecules containing even short lengths of heteroduplex DNA results in the retention of the labeled supercoiled DNA on the filter (Roman et al., 1991). In the absence of recBCD enzyme, recA protein cannot promote the formation of joint molecules with these substrates (Fig. 7B, open diamond); in the absence of recA protein, no joint molecules are formed with either wild-type or mutant recBCD enzyme (Fig. 7B, open squares and +). When a subsaturating amount of wild-type recBCD enzyme is incubated with recA protein and linear dsDNA lacking a χ sequence, joint molecules are formed at an initial rate of 2.6% min⁻¹, and a maximum of 42% of the supercoiled DNA is taken up in joint molecules (Fig. 7B, open circle). In the presence of χ, the initial rate increases almost twofold to 4.9% min⁻¹, and the extent of the reaction increases to 52% (Fig. 7B, open triangle). RecB²¹⁰⁹CD enzyme, on the other hand, is less proficient at promoting joint molecule formation by recA protein. As expected from the absence of any apparent χ-cutting activity by the mutant enzyme (Amundsen et al., 1990; Eggleston & Kowalczykowski, 1993), the presence or absence of a χ site in the donor DNA does not affect the initial rate of joint molecule formation (Fig. 7B, closed circle and closed triangle), which, at 0.8% min⁻¹, is three to sixfold lower than that of wild-type recBCD enzyme; in addition, the extent of the reaction (18%) is up to threefold lower. The magnitude of this rate difference in the presence of χ is greater than can be accounted for by the difference in helicase rate (~3-fold) alone.

Recent studies have suggested that the non-specific dsDNA exonuclease activity of recBCD enzyme is depressed after the enzyme encounters a properly oriented χ site (Dixon & Kowalczykowski, 1991, 1993). Consequently, DNA which is unwound after a χ is recognized and nicked is liberated as an intact ssDNA fragment (Dixon & Kowalczykowski, 1991, 1993). In the recBCD enzyme-dependent joint molecule formation assay, therefore, the presence of a χ site in the linear duplex DNA has the effect of generating a discrete subpopulation of joint molecules which have incorporated the χ-dependent fragment, whereas in the absence of χ, recBCD enzyme remains in its nucleolytic mode, generating a heterogeneous population of fragments and, hence, a disperse joint molecule population. This observation has proven useful in the analysis of recABC protein-dependent joint molecule formation by agarose gel electrophoresis (Dixon & Kowalczykowski, 1991).

M13mp7 DNA, which, as noted in Roman et al. (1991), contains a χ site at position 4943 to 4950, was used initially (diagrammed in Fig. 8A). In Figure 8B (lanes 2 to 5), a distinct joint molecule band which corresponds to invasion of the supercoiled DNA by the χ-dependent fragment is seen with the wild-type enzyme; this species is superimposed on a disperse population of joint molecules generated by χ-independent nicking (Roman et al., 1991). In addition, a joint molecule species of lower mobility in which the full-length 5' strand is incor-
Figure 8. Agarose gel analysis of joint molecule formation by the combined actions of wild-type or mutant recBCD enzyme, recA protein, and SSB protein. The linear DNA substrates used are diagrammed (A). The pairs of DNA substrates were as follows: EcoRI digested M13 DNA and supercoiled M13 DNA (B); SalI digested pBR322 (x") DNA (C); and PvuII digested pBR322 (x") DNA and supercoiled pBR322 (x") DNA (D). The reactions were performed essentially as described for Fig. 6B except that 40 μM nucleotide (276 nM or 47 μM molecule) of the linear substrate and 20 μM nucleotide (138 nM or 248 nM molecule) of the supercoiled substrate were used. Time points were withdrawn at 0, 2, and 5 min for the wild-type enzyme reactions, and at 0, 4, and 10 min for the recB2105CD enzyme reactions. The presence of a χ sequence is noted above the appropriate lanes. The mobility of the χ-dependent joint molecule is indicated.

 incorporated is also formed irrespective of the presence of χ (data not shown; see Dixon & Kowalezykowski, 1991). In the mutant enzyme reaction (Fig. 8B, lanes 8 to 10), a fairly discrete band of slightly lower mobility is present, as will be demonstrated below, however, this band presumably derives not from cutting at χ but from specific cutting at a cryptic site. This interpretation is supported by results obtained when the nuclease activities of the mutant enzyme is examined. When 5' end-labeled M13 DNA is treated with recB2105CD enzyme, a discrete band which corresponds neither to full-length M13 nor to the χ-dependent fragment is observed specifically under these conditions (Eggleston & Kowalezykowski, 1993).

To confirm that the discrete band observed in the presence of the mutant enzyme derived from cutting at a cryptic site rather than at χ, the experiment was repeated with pBR322 DNA which either lacked or contained the χ sequence and which was linearized with either PvuII or SalI (illustrated in Fig. 8A). With SalI digested DNA, no discrete band is observed in either the wild-type (Fig. 8C, lanes 2, 3) or the mutant (Fig. 8C, lanes 5, 6) enzyme reactions in the absence of χ, while in the presence of χ, a discrete joint molecule is visible in the wild-type enzyme reaction (Fig. 8C, lanes 8, 9) but not in the mutant enzyme reaction (Fig. 8C, lanes 11, 12). pBR322 DNA linearized with PvuII was used to eliminate the possibility that recB2105CD enzyme was unable to recognize χ sites that were distant from the entry site; in this molecule, the χ site is positioned closer to the entry site, and hence the length of the intact χ fragment is longer (Fig. 8A). As expected, the χ-dependent joint molecule produced by wild-type recBCD enzyme has a lower mobility due to the greater size of the invading strand (Fig. 8D, lanes 8, 9), whereas no discrete
band is observed in the mutant enzyme reaction (Fig. 8D, lanes 11, 12). Thus, recB2109CD enzyme is unable to produce χ-specific joint molecules.

4. Discussion

In this paper, we have shown that in several respects, the helicase activity of the recB2109CD enzyme is reduced compared to that of the wild-type recBCD enzyme. The rate of unwinding by the mutant enzyme is ~ threefold slower than that of wild-type recBCD enzyme (kcat, cat = 87 versus 231 s⁻¹ at 25°C; Table 1). The Km for DNA ends of both enzymes (0.9 versus 0.8 nM; Table 2) at low salt concentrations is in the range of the in vivo concentration of DNA ends (~0.9 nM) (Roman & Kowalezykowski, 1989a). The Km for ATP of the mutant enzyme, however, is significantly greater than that of the wild-type enzyme (800 μM versus 130 μM; Fig. 4). Since the recB2109CD enzyme has an ATP-binding consensus sequence (Finch et al., 1986) and is labeled by the ATP photoaffinity analog, azido-ATP (Julin & Lehman, 1987), it is conceivable that the recB2109 mutation alters ATP binding: this mutation has not been sequenced, however, so this proposal cannot be confirmed. The processivity of the mutant enzyme is also reduced ~ threefold, from an average of 30 kb unwound/DNA end by the wild-type enzyme (Roman et al., 1992) to 13 kb/end for the mutant enzyme at physiological ATP concentrations (Fig. 5). The observation that both the rate of unwinding and the processivity of the recB2109CD enzyme are reduced threefold implies that a lower intrinsic rate of unwinding, rather than an increased rate of dissociation, accounts for the decreased processivity of the mutant enzyme.

As shown in the accompanying paper, the non-specific nucleolytic activities of the mutant enzyme are somewhat reduced compared to those of the wild-type enzyme (Eggleston & Kowalezykowski, 1993). During the initial unwinding and degradation of duplex DNA, however, the rate of solubilization of DNA is nearly equivalent for the two enzymes (Eggleston & Kowalezykowski, 1993). Because the dsDNA exonuclease activity of recBCD enzyme is in actuality a ssDNA endonuclease activity which is manifest only during the unwinding of DNA (Taylor et al., 1985), the rate of non-specific degradation must be considered in the context of the rate at which the DNA is unwound. Therefore, when the apparent initial rate of dsDNA degradation is corrected for the two to threefold reduction in rate of helicase activity of the mutant enzyme (Table 1), the rate of exonuclease activity would be higher for the recB2109CD enzyme, suggesting that this enzyme nicks duplex DNA two to three times more frequently per unit length than does wild-type recBCD enzyme.

One of the more physiologically significant findings, in terms of recB2109CD enzyme behavior in vitro is its reduced ability to initiate the formation of joint molecules in the presence of both recA and SSB proteins. Filter-binding and agarose gel assays have been used to examine this biologically important function of recBCD enzyme in initiating joint molecule formation in the presence of both recA and SSB proteins (Roman et al., 1991; Dixon & Kowalezykowski, 1991). As demonstrated by Dixon & Kowalezykowski (1991), these assays are also responsive to the presence of a χ sequence in the donor (linear duplex) DNA molecule. Wild-type enzyme, which can productively interact with χ, demonstrates heightened activity in the presence of χ (Figs 7 and 8), in qualitative agreement with in vivo observations of the stimulatory effect of χ on recombination. Although the mutant enzyme is processive enough to completely unwind the dsDNA substrate used in the assay (Figs 5 and 6), recB2109CD enzyme-initiated joint molecule formation is less efficient, irrespective of the presence or absence of χ (Fig. 7). As noted in the accompanying paper (Eggleston & Kowalezykowski, 1993), this inability of the mutant enzyme to productively interact with χ could result from either failure to recognize the site or failure to attenuate the 3' strand non-specific nucleolytic activity.

In the absence of χ, the initial rate of joint molecule formation by the mutant enzyme is, again, approximately threefold less than that of the wild-type enzyme, indicating that, when normalized for helicase activity, the enzymes appear to be similar. If it were true that the apparent difference between the enzymes in the absence of χ was accounted for solely by the slower unwinding rate of the mutant enzyme, however, then the yield of product molecules generated by the mutant enzyme should approach that generated by the wild-type enzyme if the reaction were allowed to proceed for a longer period of time. Since this result is not observed (Fig. 7, and data not shown), it is likely that a subpopulation of the ssDNA products which result from unwinding and concomitant degradation of the linear duplex substrate by recB2109CD enzyme are incompetent for joint molecule formation. This subpopulation of molecules may be ssDNA fragments which are of insufficient length to be efficiently incorporated into stable joint molecules by recA protein, an interpretation which would agree with our proposal that the mutant enzyme nicks duplex DNA more frequently than the wild-type enzyme (see above).

Before proposing a model based strictly on these biochemical findings, the available genetic characterization of the recB2109 mutation, summarized by Amundsen et al. (1990), must also be considered. In several respects, the effects of this allele in vivo are as pronounced as those displayed by a recB or recC null allele. The frequency of conjugal recombination in a recB2109 strain is reduced by as much as 10³-fold. Such a strain is also extremely sensitive to the DNA-damaging agent, mitomycin C. The frequency of λ red− gam− recombination and the degree of χ activation of λ recombination in a recB2109 strain are not significantly different from those of strains bearing recB or recC null alleles. The observation that recombination of λ red− gam− (χ₀)
phage is lower in a mutant strain than in a wild-type strain suggests that unwinding of duplex DNA by the mutant enzyme results in DNA molecules unsuitable for recombination and/or that the dsDNA exonuclease activity of the wild-type enzyme is partially attenuated by non-canonical χ-like sequences. Although the in vivo degradation of T4 2+ phage by the mutant enzyme is essentially equivalent to that of the null alleles, in the absence of the gene 2 product, twice as much acid-soluble material is released in the recB2109 strain when compared to the null alleles. Like wild-type recBCD enzyme, however, recB2109CD enzyme does not allow plating of T4 2− phage. The biological basis of this phenotype is unclear and may result from the helicase and/or the dsDNA exonuclease activities of the enzyme. Recently, Rinken et al. (1992) have shown that unwinding activity alone is sufficient to inhibit plating of T4 2− phage. Thus, we assume that the recB2109CD enzyme must have, minimally, helicase activity in vivo. If this mutant enzyme were able to unwind DNA but not degrade the 3′ strand, we would expect, based on our current understanding of how the enzyme acts and is regulated, that the enzyme would not be recombination-deficient. This assumption is reasonable, since either recBCD enzyme mutants of the 4 class (Chaudhury & Smith, 1984) or the isolated recBC enzyme (Palas & Kushner, 1990), which have no dsDNA exonuclease or χ-nicking activity but do possess reduced helicase activity, are fully capable of forming recombinant products; these results suggest that DNA unwinding alone, in the absence of non-specific degradation or nicking at χ, is sufficient for recombination. Thus, the genetic data and our results suggest that, given an adequate cellular concentration of ATP and Mg2+ (Egelston & Kowalezykowski, 1993), the mutant enzyme must also have dsDNA exonuclease activity.

Taken as a whole, our studies of recB2109CD enzyme provide a groundwork for considering its activity in vivo. RecB2109CD enzyme is able to bind the ends of dsDNA and initiate its unwinding. As unwinding proceeds, the duplex molecule is degraded into short ssDNA fragments, even in the presence of χ sequences. At physiological concentrations of ATP (1 to 3 mM) (Boehner & Ames, 1982; Lowry et al., 1971; Mathews, 1972), both the helicase and the nuclease activities of the mutant enzyme are estimated to be only ~70% of their maximum since the Km for ATP by every criteria measured (dsDNA exonuclease, DNA helicase, and processivity of helicase activity) is higher than that of the wild-type enzyme and is comparable to the physiological concentration of this cofactor; therefore, the differences between the wild-type and mutant enzyme in vivo may be greater than the in vitro Kcat comparison suggests. After unwinding an average of 13 kb, the mutant enzyme dissociates from the DNA. Recombination in recB2109 cells does not occur with high frequency because long, intact ssDNA molecules which can be utilized efficiently by recA protein are not produced. This situation contrasts dramatically with that of the wild-type recBCD enzyme, which is converted by its productive interaction with χ into a recombination-proficient entity that produces significant lengths of 3′-tailed ssDNA (Romain et al., 1991; Dixon & Kowalezykowski, 1991, 1993). While the reductions in the nuclease and helicase activities of recB2109CD enzyme observed in vivo are reproducible, they are probably less significant in vivo. Therefore, the inability of the mutant enzyme to recognize the χ site and/or to attenuate the 3′-terminal strand-specific nuclease activity once a χ sequence is encountered is probably highly significant. This important defect obstructs the regulatory mechanism by which the activities of recBCD enzyme are normally governed.

We are grateful to Drs. Gerry Smith, A. John Clark, Roger McMacken, and Lucía Rothman-Denes for providing strains and plasmids essential to these studies. Dr. Malcolm Winkler, currently at the University of Texas Health Center in Houston, kindly provided the use of the pulsed-field gel apparatus. Discussions with and comments on the manuscript by D. Dixon, P. Lavery, S. Launder, J. New, and B. Rehrauer were greatly appreciated. This work was supported by N.I.H. research grants GM-41347 and AI-18987 to S. C. K. and in part by a pre-doctoral fellowship from N.I.H. N.R.S.A. training grant GM-08061 to A. K. E. A preliminary account of this work was presented at the conference RecA and Related Proteins, held in Sclay, France on September 17 to 21, 1990 and Genetic Recombination and Genome Rearrangements, held at Saxton’s River, Vermont on July 28 to August 2, 1991.

References

Florini, J. R. & Vestling, C. S. (1957). Graphical deter-

Edited by P. von Hippel